

Soilvorks

2020(v1.1) Release Notes

Copyright © 1989~2014. MIDAS Information Technology Co., Ltd. ALL RIGHTS RESERVED.

Release Note

Pre/Post-Processing

- 1. [Slope & Ground] Partial Factor
- 2. [SoftGround] Generating the report from 1D consolidation analysis
- 3. [Slope] Display the horizontal seismic force in free body diagram from Limit Equilibrium Method (LEM)
- 4. [Slope] Display the reinforced forces from Limit Equilibrium Method (LEM)
- 5. [Seepage] Multi flux result function
- 6. [Seepage] Saturation result function
- 7. [Common] Size control function for Result Tag (Tunnel/Slope/Seepage/Softground/Dynamic)
- 8. [Seepage] Display Seepage flow on the Total Head result

Analysis

- 1. [Foundation] Including an Acceleration of Convergence
- 2. [Slope] Updated slice segmentation
- 3. [Dynamic] Generation of artificial earthquake

1. [Slope & Ground] Partial Factor

- Considering the partial factor from Euro Code (Refer to EN1997-1 Annex A)
- Applying to FEM analysis from Ground Module and LEM & SRM analysis from Slope Module.

rtial Factor	X	Name: Define name of partial factor	
Name	Name Define Partial Factor Property Loade	Define Partial Factor	
	Import Database None Assign	To Define the values for partial factor	
	Permanent Material Parameters (Nodal/Pressure Load) Cohesion (c) 1.000	Import Database:	
	Favorable 1.000 Unfavorable 1.000	Select database (DA1C1, DA1C2, DA2, DA3) and assign	
	Variable Undrained Cohesion (Su) 1.000 (Nodal/Pressure Load) Unit Weight 1.000	Permanent (Nodal/Pressure Load):	
	Favorable 1.000	Input the partial factor values for Favorable & Unfavorable	
		to apply to Load	
	Window ship	Variable (Nodal/Pressure Load):	
		Input the partial factor values for Favorable & Unfavorable	
		to apply to Load	
	Add Modify Delete Close	Material Parameters:	
		Input the partial factor values for material parameters	

al parameters

Cohesion: Partial factor value for Cohesion

Internal Friction Angle: Partial factor value for friction angle Undrained Cohesion: Partial factor value for undrained cohesion

1. [Slope & Ground] Partial Factor

- Considering the partial factor from Euro Code (Refer to EN1997-1 Annex A)
- Applying to FEM analysis from Ground Module and LEM & SRM analysis from Slope Module.

				×
me	Name			
	Define Partial Factor Prope	ty Loads		
	Ground Material/Structural	Property		
	Weathered Soil (Gro	und Material Property : Mohr-Cou	ulomb)	•
				U
	Partial Factor			· · ·
	Paramete	r Original	Factored	
	Cohesion (c)	15	12	kN/m²
	Internal Friction Angle	(φ) 29.5	24.352	[deg]
		0	0	KIN/III*
	Variation in Cohesion	0		4
	Variation in Cohesion			k

Property

Ground Material/Structural Property

Select material (Soil/structural) from Ground

Material/Structural Property table to apply partial factor

Partial Factor

Fo verify applied partial factor

Driginal: Unfactored values prior to apply partial factor which are defined in the Ground Material Property(Model > Property > Ground Material Property)

Factored: Factored values which are applied partial factor in Define Partial Factor tap

1. [Slope & Ground] Partial Factor

- Considering the partial factor from Euro Code (Refer to EN1997-1 Annex A)
- Applying to FEM analysis from Ground Module and LEM & SRM analysis from Slope Module.

1. [Slope & Ground] Partial Factor

- Considering the partial factor from Euro Code (Refer to EN1997-1 Annex A)
- Applying to FEM analysis from Ground Module and LEM & SRM analysis from Slope Module.

Construction Stages		× Partial Factor
Initial RW+SC Ex1 S1 Ex2	Construction Stage Data Name Initial Analysis Type Nonlinear Static Analysis Partial Factor DA1C1 Load Step No. of Steps 1	To Apply Partial Factor which is created by Partial F function (Analysis I Design > Construction Stage > F Factor)
	Save Step Last Step All Steps Water Level 0.000 m W1	Partial Factor can be applied first stage only
	□ Load Distribution ✓ Initialize Displacement	For Ground Module,
	Undrained Condition Add Modify	Nonlinear Static Analysis can be applied Partial Fa
Define Construction Stage Analysis Model	Close	From Slope Module ,

1. [Slope & Ground] Partial Factor

- Considering the partial factor from Euro Code (Refer to EN1997-1 Annex A)
- Applying to FEM analysis from Ground Module and LEM & SRM analysis from Slope Module.

ne Construction Stages		×	• 🖳 Substage
Elotial RW+SC RW+SC RW+SC_1 S1 S1 S1 S1		Construction Stage Data Name Ex1 Analysis Type Nonlinear Static Analysis Partial Factor DA1C1	It is function for creating substage to apply another particular factor from same stage
	•	Load Step No. of Steps Save Step ● Last Step Water Level 0.000 m	Note: Substage can be made one stage only
		Load Distribution Initialize Displacement Undrained Condition	

2. [SoftGround] Generating the report from 1D consolidation analysis

- Previously, report generation function from 1D consolidation analysis was performing to Parametric Analysis (Preliminary Analysis / Drain Spacing / Preloading) only.
- •It has updated to generate the report from construction stage analysis and single analysis case (defined from analysis case) as well.

Analysis | Design > Run > Report

• Generate the report

Need to define the "review analysis case" and "position for results" from [1D Consolidation > Report >

Consolidation Report] after performing the analysis to generate the report.

solidation	Report	×				
onsolidatio	n Report Preliminary Analysis Pre	eloading Drain Spacing		Г		
Period of	consolidaiton / Output option		List			
Check	Consolidation Period	Output Output option list Image: Applied Design Parameter Soft Ground Design Standard Image: Time-Settlement/Load curve Time-Settlement/Load curve Image: Time-Degree/Load curve Increased Strength	L. Suist Chaddison for Sulf Crowni	L. Check Conditions for So L Applied Design Parameter Li Embandment Design Parameter water 100% MMC Sequence(100)	LL Soft Ground Stability C L. Normal Analysis 1.1 Cassidization settement check	Approx/Instantian 201 A A A B
Analysis c	case for report generation		L. Normal Analysis	inactifies (1) (3) (A)	1.1.1 X=81.29m Cansulidation settlemen	Degree al Disaucitation (%) 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,
Check	Review analysis case	Position for Results	1.3 Controlidation section can check result 1.1.1.2.48.2897 Constraints sectioner		1) Local settlement calculation results	Descend (2):00:00:00;00;
\checkmark	Normal Analysis	X = 81.29m	1.3 Increased Bhyrnght	1.2 Soft Ground Design Parameters	Distance Applied	
\checkmark	PBD Analysis	X = 81.29m	1.2.1 increased ground press by mages	water at the second subsection and	Principal Section Statements	
\checkmark	SCP Analysis	X = 81.29m	1.2.2 increased in soil strength by suggest	* Settprine dure + 1-lation properties for disign application r	Conveniences largest 18-1277	4) Thic-Settlemente Load curve
\leq	Pack Analysis	X = 81.29m	2. F3D Anolysis	Sector Inflatival Comprision Laplacian (A) refer Inflat Inflat (A) (6) (O) (O)	Jacobian State 1 Marcy Constitution of Final Area 1485	A: Ground Schare
			 Li Chesiang Beniralhet Effective Circ Li Zheney of Exclud Contribution Th 	Dypecky Dat 5007 c Desir/Day Dat 500 c	decountry Construction 5:0033	Normal Analysis : 81.29 : Grouns Barboe : Bottoment Clano
			2.1 s 2+829rt Version Uniting Specif		nal Schwa (75%	1 p
			2.2 Consolidation section can check result	. Set point is any 'ny oparia aggliad withdog or anch		β ₁ <u>i</u>
Report ch	ecked Positions for Analysis Case (N	Normal Analysis)	2.2.1 X+8., 297: Controlication series as	Balethada Referend Park	31 Settlement culculation results av stages	Acce Balance 1000000
Check	Position for Results	Apply	2.3 Increased Strength	Average Contract (testary	Construction Store Time Countrative Land 19	42
\sim	X = 81.29m		2.3.1 increased ground means for magnet.	Laster 19 2.06	(dig) (dig)	
-	X = 91.29m		3.5CP Andreis		artice advantations = = = = = = = = = = = = = = = = = = =	% Smart Surface 7
	X = 101.29m				Omposity 1 1 8.259	
	X = 111.29m X = 71.29m				Calminian van 200 com	
ī	X = 61 29m	~				2
		OK Cancel				2

3. [Slope] Display the horizontal sesmic force in free body diagram from Limit Eequilibrium Method (LEM)

- •Display the horizontal seismic force (direction, value) in the free body diagram from Limit Equilibrium Method (LEM)
 - Vertical capacity: W -> W(Include Vertical Seismic)
 - Horizontal capacity: Horizontal Seismic Force

4. [Slope] Display the reinforced forces from Limit Equilibrium Method (LEM)

- Display the reinforced force of the reinforcement from Limit Equilibrium Method (LEM)
- The axial resist mechanism will be covered by pull out and tensile strength, will be used smaller value.

5. [Seepage] Multi flux result function

• It is possible to calculate the flux of arbitrary section which is passing the elements from a post window.

	Previo	usly, it was	calculated 0 wh	nen the flux a	and inflow are san	ne.	
This	function has upda	ated to calc	ulate the flux in	arbitrary sec	ction from arbitrar	y calculat	tion type.
			B		A	Soliworks* Invalid Sergage Invalid Ser	
Results	×	Flux Results	×	Flux Results	×	Flux Results	
ysis Case	1 ~	Analysis Case	1 ~	Analysis Case	1 ~	Analysis Case	1
ysis Case /Stage	1 V Seepage (Steady State) Analysis V	Analysis Case Step/Stage	1 V Seepage (Steady State) Analysis V	Analysis Case Step/Stage	1 V Seepage (Steady State) Analysis V	Analysis Case Step/Stage	1 Seepage (Steady State) Analysis
ysis Case /Stage ntity Type de	1 ~ Seepage (Steady State) Analysis ~ Node ~	Analysis Case Step/Stage Quantity Type Node	1 ~ Seepage (Steady State) Analysis ~ Node ~	Analysis Case Step/Stage Quantity Type Position	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~	Analysis Case Step/Stage Quantity Type Position	1 Seepage (Steady State) Analysis Arbitrary Section
ysis Case //Stage ntity Type de 33 34 35 36 37	1 ~ Seepage (Steady State) Analysis ~ Node ~ '38 39 40 42 43 41 45 46 47 44 48 49 50 5	Analysis Case Step/Stage Quantity Type Node 85 365 327 357 318 3	1 ~ Seepage (Steady State) Analysis ~ Node ~ 387 380 113 30 172 156 277 228	Analysis Case Step/Stage Quantity Type Position Start Point	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~ 27.4553, 12	Analysis Case Step/Stage Quantity Type Position Start Point	1 Seepage (Steady State) Analysis Arbitrary Section 26, 12
ysis Case /Stage ntity Type de 33 34 35 36 37	1 ~ Seepage (Steady State) Analysis ~ Node ~ '38 39 40 42 43 41 45 46 47 44 48 49 50 5	Analysis Case Step/Stage Quantity Type Node 85 365 327 357 318	1 ~ Seepage (Steady State) Analysis ~ Node ~ 887 380 113 30 172 156 277 228	Analysis Case Step/Stage Quantity Type Position Start Point End Point	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~ 27.4553, 12	Analysis Case Step/Stage Quantity Type Position Start Point End Point	1 Seepage (Steady State) Analysis Arbitrary Section 26, 12 26, 12 26, 02
vsis Case /Stage ntity Type de 33 34 35 36 37 ine List	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5	Analysis Case Step/Stage Quantity Type Node (95 365 327 357 318 1	1 ~ Seepage (Steady State) Analysis ~ Node ~ 887 380 113 30 172 156 277 228	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~ 27.4553.12	Analysis Case Step/Stage Quantity Type Position Start Point End Point	1 Seepage (Steady State) Analysis Arbitrary Section 26, 12 26, 0 26, 0
vsis Case /Stage titty Type fe 33 34 35 36 37 ne List	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5 A.node	Analysis Case Step/Stage Quantity Type Node (95 365 327 357 318 3 Define List Name	1 ~ Seepage (Steady State) Analysis ~ Node ~ 387 380 113 30 172 156 277 228	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~ 27.4553, 12 51.444, 0	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name	1 Seepage (Steady State) Analysis Arbitrary Section 26, 12 26, 0 26, 0 B_divide 0
sis Case /Stage tity Type le 33 34 35 36 37 ne List ne	1 ~ Seepage (Steady State) Analysis ~ Node ~ 38 39 40 42 43 41 45 46 47 44 48 49 50 5 Analysis ~ A_node Add	Analysis Case Step/Stage Quantity Type Node (85 365 327 357 318 : Define List Name	1 ~ Seepage (Steady State) Analysis ~ Node ~ 387 380 113 30 172 156 277 228 . B_node . Add .	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name	1 ~ Seepage (Steady State) Analysis ~ Arbitrary Section ~ 27.4553, 12	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name	1 Seepage (Steady State) Analysis Arbitrary Section Arbitrary Section 26, 12 26, 0 B_divide Add
rsis Case /Stage titty Type le 33 34 35 36 37 ne List ne ame node	1 ~ Seepage (Steady State) Analysis ~ Node ~ 138 39 40 42 43 41 45 46 47 44 48 49 50 5 Analysis ~ A_node Add	Analysis Case Step/Stage Quantity Type Node (85 365 327 357 318 : Define List Name Name B_node	1 ~ Seepage (Steady State) Analysis ~ Node ~ 387 380 113 30 172 156 277 228 B_node Add	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node	1 ~ Seepage (Steady State) Analysis ~ ~ Arbitrary Section ~ ~ 27.4553, 12	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node	1 Seepage (Steady State) Analysis Arbitrary Section Arbitrary Section 26, 12 26, 0 B_divide Add
rsis Case /Stage titty Type le 33 34 35 36 37 ine List ne ame _node _node	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5	Analysis Case Step/Stage Quantity Type Node (95 365 327 357 318 3 Define List Name Name B_node A_mode	1 ~ Seepage (Steady State) Analysis ~ ~ Node ~ 887 380 113 30 172 156 277 228 . B_node . Add .	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name Name B_node A_node	1 ~ Seepage (Steady State) Analysis ~ ~ Arbitrary Section ~ ~ 27.4553, 12 ~ 51.444, 0 ~ A_divide ~ Add Modify	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node A_node	1 Seepage (Steady State) Analysis Arbitrary Section Arbitrary Section 26, 12 26, 0 B_divide Add Modify Add
ysis Case /Stage titty Type de 33 34 35 36 37 ine List me ame node node 	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5	Analysis Case Step/Stage Quantity Type Node 195 365 327 357 318 : Define List Name Name B_node A_node A_divide B_dide	1 ~ Seepage (Steady State) Analysis ~ Node ~ Node ~ 387 380 113 30 172 156 277 228	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name Name B_node A_node A_divide B_divide	1 ~ Seepage (Steady State) Analysis ~ Analysis ~ Arbitrary Section ~ 27.4553, 12 51.444, 0 Add Add Add Modify Delete Delete	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node A_node A_node A_divide B_dideta	1 Seepage (Steady State) Analysis Arbitrary Section Arbitrary Section 26, 12 26, 0 B_divide Add Modify Delete
rsis Case /Stage tity Type le 33 34 35 36 37 ine List ne ame node node divide divide	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5 Analysis ~ A_node Add Modify Delete	Analysis Case Step/Stage Quantity Type Node 195 365 327 357 318 3 Define List Name Name B_Inode A_rode A_divide B_divide	1 ~ Seepage (Steady State) Analysis ~ Node ~ 387 380 113 30 172 156 277 228 Bnode	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name Name Name Name A_node A_divide B_divide	1 ~ Seepage (Steady State) Analysis ~ ~ Arbitrary Section ~ 27.4553, 12	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node A_node A_node A_divide	1 Seepage (Steady State) Analysis Arbitrary Section Arbitrary Section 26, 12 26, 0 B_divide Add Modify Delete
ysis Case /Stage titty Type de 33 34 35 36 37 ine List 	1 ~ Seepage (Steady State) Analysis ~ Node ~ 738 39 40 42 43 41 45 46 47 44 48 49 50 5 Analysis ~ A_node Add Modify Delete 2 41999E 000, places for Places for	Analysis Case Step/Stage Quantity Type Node 85 365 327 357 318 : Define List Name Define List Name B_node A_clivide B_divide B_divide	1 ~ Seepage (Steady State) Analysis ~ Node ~ 887 380 113 30 172 156 277 228 . B_node . Add . Modfy . Delete .	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node A_node A_dvide B_divide	1 ~ Seepage (Steady State) Analysis ~ ~ Arbitrary Section ~ ~ 27.4553, 12 ~ 51.444, 0 ~ A.divide ~ Add Modify Delete ~	Analysis Case Step/Stage Quantity Type Position Start Point End Point Define List Name B_node A_node A_node A_divide B_divide	1 Seepage (Steady State) Analysis Arbitrary Section 26, 12 26, 12 26, 0 B_divide Add Modify Delete

6. [Seepage] Saturation result function

• It has updated to analyze the saturation in the ground element seepage results from the post.

7. [Common] Size control function for Result Tag

 It has updated to control the result tag from Tunnel/Slope/Seepage/Softground/Dynamic modules, FEM Analysis (Step 1 ~ Step 5)

8. [Seepage] Display Seepage flow on the Total Head result

•Overlay the result of seepage flow line with other results from the seepage analysis.

Properties > Miscellaneous > Seepage Flow Show/Hide

Seepage Flow Show/Hide

- Color Type : Select a color type from "contour" or "User Define".
- Color : In case of 'Color Type > User Define', Select an line color for seepage flow.
- Line Width : Assign the width of Seepage Flow line.

[Overlay the water line with others]

1. [Foundation] Including an Acceleration of Convergence

- To apply acceleration algorithm to P-y analysis to get the result more quickly from iterative method.
- If, there is divergence with P-y analysis. It can be got higher convergence with activation of this option.

Foundation > Analysis and Report Control> Define Analysis Case > Analysis Control Data

0.3000

0.2000

2. [Slope] Updated slice segmentation

 In case of underground structure, It has updated to assume the considering inner line in slice from slice segmentation in the Limit Equilibrium Method (LEM) analysis to prevent lateral flow of installation structure.

MODS

3. [Dynamic] Generation of artificial earthquake

- Acceleration data is updated by the spectrum database in the SoilWorks.
- The artificial earthquake will be generated difference every time due to the artificial earthquake is using random function so that using the seismic wave which is similar as response spectrum is recommended

