
DISCLAIMER 
 
Developers and distributors assume no responsibility for the use of MIDAS Family Program 
(midas Civil, midas FEA, midas FX+, midas Gen, midas Drawing, midas SDS, midas GTS, 
SoilWorks, midas NFX ; hereinafter referred to as “MIDAS package”) or for the accuracy or 
validity of any results obtained from the MIDAS package. 
.5 
Developers and distributors shall not be liable for loss of profit, loss of business, or financial loss 
which may be caused directly or indirectly by the MIDAS package, when used for any purpose or 
use, due to any defect or deficiency therein. Accordingly, the user is encouraged to fully 
understand the bases of the program and become familiar with the users manuals. The user shall 
also independently verify the results produced by the program. 
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1.1 General 
 
The constitutive models available in SoilWorks are classified based on the purposes of their 
usage as follows: 
 
1) Structural constitutive models  

 Nonlinear elastic model for elastic link 
 Geotextile model 
 Interface Behavior model 
 Pile nonlinear model 
 Interface Behavior Model for Rockbolt, Anchor and Nail 
 

2) Geotechnical constitutive models 

 Linear elastic model 
 Tresca model 
 von Mises model 
 Mohr-Coulomb model 
 Drucker-Prager model 
 Hyperbolic model (Duncan-Chang model) 
 Hoek-Brown model 
 Modified Cam-Clay model 
 Sekiguchi-Ohta model 
 

3) Seepage constitutive models 

 Permeability coefficient function 
 Volumetric water content function 
 Consecutive function 

 
The structural and geotechnical constitutive models above can be grouped into (linear and 
nonlinear) elastic and elasto-plastic models depending on the characteristics of material 
behaviors. 
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A. Elastic constitutive model  
A-1. Linear elastic constitutive model  
 Linear elastic model 

 
 A-2. Nonlinear elastic constitutive model 

 Nonlinear elastic model for elastic link 
 Geotextile model of linear elements 
 Pile nonlinear model 

 
B. Elasto-plastic constitutive model 

 Interface model 
 Interface behavior model for anchor, rockbolt and nail 
 Tresca 
 von Mises 
 Mohr-Coulomb 
 Drucker-Prager 
 Hyperbolic model (Duncan-Chang model) 
 Hoek-Brown model 
 Modified Cam-Clay model 
 Sekiguchi-Ohta model 

 
C. Visco Elasto-plastic constitutive model 

 Sekiguchi-Ohta model 
 

Analysis algorithms of nonlinear elastic and elasto-plastic constitutive models can be 
found in Section 1.3 Nonlinear Analysis of Tunnel Manual.  In the rest of this chapter, 
yield criteria for elasto-plastic constitutive models are described. Structural constitutive 
models are subsequently described in Chapter 2.  Finally, geotechnical and seepage 
constitutive models are described in Chapter 3 and Chapter 4 respectively.  
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1.2 Yield Criteria for Elasto-plastic Models  
 
Difficulties arise in geometrically or physically expressing a yield function by the commonly 
used multi-axial stress components.  Accordingly, the yield function is generally defined in 
terms of the components, which are independent of the stress coordinate system.  The 
yield condition is defined using the principal stresses as follows: 
 

( )1 2 3, , 0f σ σ σ =       (1.2.1) 

 
One of the convenient methods to express a yield function is to use stress invariants. 
 
 
1.2.1 Stress Invariants 
 
1.2.1.1 Stress Invariants 
 
The stress state at a given point within a material can be expressed using the stress tensor, 

ijσ .  The following equation is given using the direction vector, jn , which defines the 

principal stress direction. 
 

( ) 0ij ij jnσ σδ− =       (1.2.2) 

 

where, ijδ : Kronecker delta  

In order to obtain a non-zero solution for jn  in Eq. (1.2.1) while satisfying Eq. (1.2.2), the 

following condition needs to be met. 
 

0ij ijσ σδ− =       (1.2.3) 

 
The matrix Eq. (1.2.3) can be expressed in a cubic equation of principal stresses. 

 
3 2

1 2 3 0I I Iσ σ σ− + − =      (1.2.4) 

 
where,  
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  (1.2.5) 

 

The principal stresses, 1σ , 2σ  and 3σ , can be combined to form the first, second, and third 

stress invariants, I1, I2 and I3 respectively. 
 

1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I
I
I

σ σ σ
σ σ σ σ σ σ
σ σ σ

= + +
= + +
=

     (1.2.6) 

 
 
1.2.1.2 Deviatoric Stress Invariants 
 
The stress tensor, ijσ  can be expressed using two other stress tensors, hydrostatic stress 

tensor (𝜎𝑚) and deviatoric stress tensor (𝑠𝑖𝑗). 
 

ij ij m ijsσ σ δ= +       (1.2.7) 

 
The hydrostatic stress tensor represents the state of volume change meaning the average 
stress, while the deviatoric stress tensor represents the state of distortion in a pure shear 
state. 
 
In order to calculate the deviatoric stress invariants, the following equation needs to be 
solved as was done to calculate the stress invariants from Eq. (1.2.3). 
 

0ij ijs sδ− =
      (1.2.8) 

 
Expressing Eq. (1.2.8) in the form of an equation, it can be written as, 

 
3 2

1 2 3 0s J s J s J− + − =      (1.2.9) 
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where,   
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  (1.2.10) 

 

The deviatoric principal stresses, 1s , 2s  and 3s , can be combined to form the first, second, 

and third deviatoric stress invariants, J1, J2 and J3 respectively. 
 

( ) ( ) ( ) ( )

( )
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2 2 22 2 2
2 1 2 3 1 2 2 3 3 1
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  (1.2.11) 

 

1I , 2I , 3I , 1J , 2J  and 3J , are invariants of scalar values independent of the orientation 

of the coordinate system.  The three invariants, 1I , 2J , and 3J , are primarily used to 

define the yield function (yield surface) because of its simplicity in geometry. 
 

 
1.2.1.3 Geometric Meaning of the Three Stress Invariants 
 
Yielding in most material models is mainly governed by the deviatoric stresses. Accordingly, 
decomposing the yield function into hydrostatic and deviatoric stress components serves to 
very conveniently define the geometric shape of the yield function.  
 
The following describes the method of decomposing the stress state at a point, 

( )1 2 3,  ,  σ σ σP  into a hydrostatic pressure axis and a deviatoric stress axis. 
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Figure 1.2.1 State of stress in the principal stress space 
 
 
As shown in Figure 1.2.1, the stress state represented as the point P can be defined as a 
vector, OP in the principal stress coordinate system.  This vector, OP can be decomposed 
into two vectors, ON along the hydrostatic pressure axis and NP on the deviatoric plane 
perpendicular to the hydrostatic pressure axis.  The magnitude of each vector is given by, 
 

1

2

1
3

2

I

r J

ξ= =

= =

ON

NP
      (1.2.12) 

 

 
 

Figure 1.2.2 State of stress on the deviatoric plane (Projection of the stress on the deviatoric plane) 
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Figure 1.2.2 shows the deviatoric plane perpendicular to the hydrostatic pressure axis.  In 
order to define the state of stress at the point P on the deviatoric plane, the vector NP must 
be rotated by 0θ  from the 1σ  axis.  Angle 0θ  is referred to as the similarity angle and 
can be expressed as, 

 

1 3
0 3 / 2

2

1 3 3cos
3 2

J
J

θ −  
=   

 
     (1.2.13) 

 
The angle, 0θ  has the following range: 
 

00
3
πθ≤ ≤       (1.2.14) 

 
For numerical analysis, using the Lode’s angle (θ ) is more convenient than using the 
similarity angle, 0θ . 
 

1 3
3 / 2
2

1 3 3sin
3 2

J
J

θ −  
= −  

 
     (1.2.15) 

 

where, 0 6
πθ θ= −

 
for the following range:  

 

6 6
π πθ− ≤ ≤       (1.2.16) 

 
In defining the yield function of a material, it is often useful to express the principal stresses 
using the stress invariants.  The principal stresses are rearranged using the Lode’s angle 
as, 
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1

2 1
2

3
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3 1

2
sin 1

33 14sin
3

J I

θ π
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σ
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  +            = +     
     

      +    

    (1.2.17) 
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2.1 Geotextile Model for Linear Elements 
 

 
SoilWorks provides a geotextile model, which is a linear element used for ground 
reinforcement and is a truss element limited to tension-only behavior.  The tension-only 
behavior is generally defined as a nonlinear elastic model or an elasto-plastic model.  
SoilWorks defines the geotextile behavior as a nonlinear elastic model for the sake of 
convenience. 
 
The nonlinear elastic behavior model provided by SoilWorks can be defined using a multi-
linear function. The tension-only behavior is depicted in Figure 2.1.1. 
 

d∆

P

 
 

Figure 2.1.1 Tension-only behavior  
 

 
In Figure 2.1.1, ∆d represents the relative displacement between the connected nodes, and 
P represents the internal member force. 
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2.2 Nonlinear Elastic Behavior of Elastic Link Element 
 
SoilWorks supports the following behavior models to represent elastic link elements: 
 

 General 
 Rigid 
 Tension-only 
 Compression-only 

 
The general behavior defines the interactive movements of two connected nodes using the 
defined stiffness between the nodes.  The rigid behavior simulates rigid body motion 
between two nodes by assigning a very large stiffness value between the nodes.  This rigid 
behavior is essentially the same as that of a rigid link element, except that the relationship 
of a master node and a slave node does not exist unlike a rigid link element. 
 
The compression-only or tension-only behavior is similar to that of the nonlinear elastic 
behavior of the geotextile model for linear elements as discussed in Chapter 2.1.  The 
nonlinear behavior is defined using the force-displacement relationship as shown in Figure 
2.2.1. 
 

d∆

P

  

d∆

P

 
    (a) Compression-only model                 (b) Tension-only model 

 
   Figure 2.2.1 Nonlinear elastic behaviors of elastic link elements 

 
 
In Figure 2.2.1, ∆d represents the relative displacement between the connected nodes, and 
P represents the internal member force.  
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2.3 Interface Model 
 

2.3.1 Introduction 
 
SoilWorks provides an interface model, which is used to simulate the behavior between 
homogeneous materials or heterogeneous materiasl.  Although it is classified as a 
structural constitutive model, it can be used to model ground behaviors including rock joints 
or bedding of strata.  The interface model is used to simulate various types of interface 
behaviors not only in geotechnical engineering but also in the architectural and civil 
engineering fields.  The interface model is based on the Coulomb’s law (1785) in which the 
friction at the interface is proportional to the coefficient of friction and the magnitude of the 
normal force acting on the interface. 
 
The main applications include the interface between (1) pile and surrounding soils, (2) 
retaining wall and supported soils, (3) lining and ground, and (4) jointed rocks or fault zones. 
This model can be also used to simulate brick and mortar in masonry buildings, discrete 
cracking in concrete, and bond-slip between steel and concrete. 
 
 

2.3.2 Material Properties 
 
The material properties required to define the interface behavior between homogeneous or 
heterogeneous materials based on the Coulomb friction are listed in Table 2.3.1. 
 

Table 2.3.1 Material property parameters for Coulomb friction    

Input parameters 
Normal stiffness modulus ( nk ) 

Shear stiffness modulus ( tk ) 

Cohesion ( c ) 

Internal friction angle (φ ) 

Tensile strength for tension cut-off 

Reduced shear stiffness for Mode-II model 

Cohesion multilinear hardening function 

Friction angle multilinear hardening function 
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2.3.3 Details of Interface Model (Coulomb Friction Model) 
 

c

/ tanc φ

tensile strength

tt

nt
φ

 
 

 Figure 2.3.1 Yield surface for Coulomb friction 
 

 
The failure function ( f ) and the potential function ( g ) in the Coulomb friction model are 

defined using three coefficients, φ , c and ψ  as presented in Eq. (2.3.1).  These 
coefficients represent the friction angle, cohesion and dilatancy angle respectively.  Figure 
2.3.1 exhibits the yield surface for the Coulomb friction model in a 2D plane. 
 

2

2

tan ( ) ( ) 0

tan

t n

t n

f t t c

g t t

φ κ κ

ψ

 = + − =


= +
                           (2.3.1) 

 
where, 

( )kφ  : Internal friction angle defined as a function of deformation 
history parameter,κ  

( )c k  : Cohesion defined as a function of deformation history 
parameter,κ  

ψ  : Dilatancy angle (a constant under a given normal stress) 
 

The plastic relative displacement ( p∆u ) is defined with the plastic multiplier ( λ ) and the 

component of the plastic direction. 
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p gλ ∂∆ =
∂

u
t

                               (2.3.2) 

 
The first-order Taylor series expansion for the yield function ( f ) is used to define the plastic 
response behavior of a structure resisting external force, which can be expressed in the 
form of a rate of increase as below. 
 

0
T

f ff κ
κ

 ∂ ∂
= + = 

∂ ∂ 
t

t
                                (2.3.3) 

 

Substituting Eq. (2.3.1) and Eq. (2.3.2) into Eq. (2.3.3), the plastic multiplier ( λ ) can be 

obtained as follows: 
 

T T
e e

T T
e e

f f

f f g f gh
λ

κ

∂ ∂   
   ∂ ∂   = ∆ = ∆

∂ ∂ ∂ ∂ ∂   − + − +   ∂ ∂ ∂ ∂ ∂   

D D
t tu u

D D
t t t t

                        (2.3.4) 

 
where, h is the hardening parameter. 
 
The incremental internal parameter (κ ) is defined as the absolute value of the plastic 

relative displacement, and is related to the increase in the plastic multiplier ( λ ) as, 

 

21 tan
T

p
t

g g gκ λ λ λ ψ λ∂ ∂ ∂   = ∆ = = ⋅ = + =   ∂ ∂ ∂   
u

t t t
      tan 1ψ <<     (2.3.5) 

 
where,  

{ }/ tan      / | |t tg t tψ∂ ∂ =t      (2.3.6) 

 
By substituting Eq. (2.3.4) and Eq. (2.3.6) into Eq. (2.3.3), the traction rate vector (increase 
in stress) can be expressed as Eq. (2.3.7). 
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T
e e

e
T

e

g f

f gh

 ∂ ∂ 
  ∂ ∂  = − ∆ 
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D D
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t t
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where, 

0
0

ne

t

k
k

 
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 
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p
t

p
t

f fh
κ κ
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∂ ∂ ∂∆ ∂

t u
t u

 

tan   t

t

g t
t

ψ
 ∂  =  

∂   t
 

tan ( )  
T

t

t

f tk
t

φ
 ∂   =   ∂    t

 

 

Rearranging Eq. (2.3.8), it can be written as, 
 

( ) tan
1

tan tan tan ( ) ( tan tan )

t
n t n t

t

tn t
n t t n

t

tk h k k k
t

th k k k k k k h k
t

ψ

φ ψ φ φ ψ

 + − 
 = ∆ − + + − + 
  

t u       (2.3.8) 

 

If the internal friction is equal to the dilatancy angle (φ ψ= ), the tangent stiffness matrix in 

the bracket becomes symmetric generating an associated plastic flow in the model.  This 
case does not coincide with the true behavior because the excessive fracture opening 
behavior can be induced in the direction normal to the interface. 
 

If the internal friction angle is not equal to the dilatancy angle (φ ψ≠ ), the tangent stiffness 

matrix in the bracket becomes non-symmetric generating a non-associated plastic flow in 
the model.  In this case, the analysis may take considerable time due to the increased size 
of memory of the stiffness matrix resulting in slow execution.  It should be noted that if the 
difference between the internal friction angle and the dilatancy angle is large (that is, non-
associativity is large), the analysis will likely diverge.  Therefore, SoilWorks recommends 
that the difference between the two angles be no more than 20 degrees ( 20φ ψ− ≤ ° ).  
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2.4 Pile Nonlinear Model 
 
2.4.1 Introduction 
 
The behavior of the pile element is described by the interface behavior between the mother 
elements of the ground and beam/truss elements of a pile.  The interface behavior of a pile 
exhibits in the two normal directions and the tangential direction to the pile.  The behavior 
in the two normal directions is assumed to act as a fully integrated rigid body between the 
pile and the mother elements.  In the tangential direction, a nonlinear elastic behavior is 
assumed. 
 
The behavior at the pile tip is also considered as the interface behavior between mother 
elements and a node at the pile tip.  The rigid body behavior between the mother elements 
and the pile tip is assumed in the normal directions to the pile, and the nonlinear elastic 
behavior is assumed in the tangential direction.  The shape of each element associated 
with the local coordinate system is described in the Tunnel manual. 
 
In SoilWorks, the interface behavior of a pile is defined using the nonlinear elastic behavior 
as described in Chapter 2.4.3. 
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2.4.2 Material Properties 
 
The required parameters for pile element modeling are listed in Table 2.4.1. 
 

Table 2.4.1 Input material property parameters for pile and pile tip models  

Input parameters Remarks 

Ultimate shear force  

Shear Stiffness Modulus Stiffness in shear direction 

Function Pile shear function 

Normal Stiffness Modulus (Kn) Stiffness in normal direction 

Reference Height Reference height of pile element 

Slope of Friction-Rel. Disp. Curve 
Rate of change in relationship curve 
between relative displacement and 
friction based on locations 

Tip Bearing Capacity Pile tip capacity 

Tip Spring Stiffness Pile tip stiffness 

Function Function of pile tip element 
 
 
 

2.4.3 Nonlinear Elastic Behavior 
 
The behavior in the tangential direction is of the main interest in SoilWorks, which is defined 
as a nonlinear elastic behavior.  The behavior in the normal directions is defined as a linear 
elastic behavior. 
 
The nonlinear elastic behavior at the interface of the pile element and the pile tip element in 
the tangential direction can be defined by the ultimate shear force or in the form of a 
function. 
 
In the case of defining the nonlinear elastic behavior by the ultimate shear force, Figure 
2.4.1 of an elasto perfectly-plastic behavior is assumed in which the shear stiffness and 
ultimate force varies with depth.  
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If the nonlinear elastic behavior is defined in the form of a function, the constitutive equation 
is formulated by a user-defined slope of the relative displacement - friction curve.  
 
Figure 2.4.2 represents the variation of the shear stiffness relative to the depth.  In order to 
estimate the interface strength at a given depth, the user needs to adjust the relative 
displacement-friction curve at the reference depth (Fig 2.4.1).  The modified relationships 
can be formulated as Eq. (2.4.1). 
 

ultimate shear
force 

relative displacement

Traction

shear stiffness modulus 

ultimate shear 
force

modified shear stiffness modulus

at the reference 
height

at the upper 
reference height 

at the lower 
reference height 

(+)

(-)

 
 

Figure 2.4.1 Relationship between relative displacement and traction 
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shear stiffness

Height

reference height 

slope of friction-rel. disp. curve

sK

 
 

Figure 2.4.2 Variation of shear stiffness at reference height 
 
 

( )
( )

1

ref ref inc
s s s

ref

k k y y k

y y
f a

t

= + − ×

−
= + ⋅

     (2.4.1) 

 
where, 

 sk  : Shear stiffness in tangential direction  
refy  : Reference depth  
ref
sk  : Shear stiffness at reference depth  
inc
sk  : Increment of shear stiffness  

y  : Integration point at a given depth 

f  : Factor of increase in stiffness  

a  : Slope of relative displacement-friction curve 
t  : Ultimate shear force 

 
The factor of increase in stiffness applies not only to the stiffness, but also applies to the 
ultimate shear force.  Note that the direction of depth is in the negative Z direction as 
shown in Figure 2.4.2. 
 

  



 

 

Constitutive Models 

SoilWorks 18 

2.5 Interface Behaviors for Anchor, Rockbolt and Nail 
 

2.5.1 Introduction 
 
Anchor, rockbolt and nail elements are 1-dimensional elements embedded in ground with 
the inclusion of interface elements between 1-dimensional elements and ground elements.  
Truss elements represent the 1-dimensional elements, and line interface elements are used 
over the bond length between the truss elements and the ground elements.  The anchor 
element consists of free length and bond length as shown in Figure 2.5.1.  Unlike the 
anchor element, the entire interface of rockbolt and nail elements fully corresponds to bond 
length. 
 

 
 

Figure 2.5.1 Anchor element 
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Figure 2.5.2 Rockbolt or nail element 
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2.5.2 Material Properties  
 
The required material property parameters to define anchor, rockbolt and nail elements are 
listed in Table 2.5.1. 
 

Table 2.5.1 Material properties required for anchor elements  

Material Property Unit 

Reinforcement 

Elastic modulus 2/N mm  

Compressive yield strength MPa  

Tensile yield strength MPa  

Diameter mm  

Internal node number at bond length 
 

Bond length mm  

Grout 
 

Grout compressive strength MPa  

Grout shear modulus MPa  

Grout friction angle Degree  

Grout annulus thickness mm  

Ground Compressive strength MPa  
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Table 2.5.2 Material properties required for rockbolt and nail elements  

Material Property Unit 

Reinforcement 

Elastic modulus 2/N mm  

Compressive yield strength MPa  

Tensile yield strength MPa  

Diameter mm  

Grout 

Grout compressive strength MPa  

Grout shear modulus MPa  

Grout friction angle Degree  

Grout annulus thickness mm  

Ground Compressive strength MPa  

 
 
 
2.5.3 Material Behaviors  
 
The behaviors of 1-dimensional elements such as anchor, rockbolt and nail elements are 
described in Constitutive Model of the midas GTS manual.  In this chapter, only the 
material behavior of the interface element is discussed.  The material behavior of the 
interface element is governed by the shear behavior between the reinforcement and the 
ground.  The interface behavior can be defined by the elasto-perfectly-plastic model using 
the relative displacement between the reinforcement and grout or the grout and rock as 
shown in Figure 2.5.3. 
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(a) Unloading 
 

 
 

(b) Reloading 
 

Figure 2.5.3 Shear behavior of grout 
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Figure 2.5.4 Maximum shear strength of grout 
 

bondK can be directly obtained from field pull-out tests.  However, if desirable test results 

are not available, an approximate value of bondK  from the following equation can be used: 

 

( )
2

10ln 1 2 /bond
G

GK
t D D
π

π
=

+
     (2.5.1) 

 

where, G  is the shear modulus of grout, Gt  is the thickness of grout, and D  is the 

diameter of the reinforcement. 
 
The maximum shear strength of the grout and the friction angle can be also determined 
from tests.  As shown in Figure 2.5.4, the maximum shear strength is assumed to linearly 
increase with the magnitude of effective confining pressure, mσ ′  , which is expressed as, 

 

 max
axial bond friction mt S S σ ′= + ×      (2.5.2) 

 
where, frictionS

 is the friction angle of the grout, and mσ ′  is the effective confinement 

pressure. 
 

bondS  is determined by the lesser of the shear strength of the ground and the shear 

strength of the grout.  Approximately 1/2 of the uniaxial compressive strength can be used 
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for the shear strengths of the ground and grout. 
 
The effective confinement pressure, mσ ′  represents the confining stress acting on the 

plane normal to the axis of the reinforcement at the reinforcement node, which is obtained 
by interpolating the stresses of soil elements connected to the node. mσ ′  is given by, 

 

 
2

nn zz
m pσ σσ

′+ ′ = − + 
 

     (2.5.3) 

 
where,  

2 2
1 2 1 22nn xx yy xyn n n nσ σ σ σ′ ′= + +  

 

zzσ ′  is out-of-plane stress, p  is pore water pressure, and in  is directional cosine in the 

direction of the reinforcement axis. 
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3.1 Linear Elastic Model 
 
3.1.1 Introduction 
 

σ

ε  
 

Figure 3.1.1 Linear elastic stress-strain behavior 
 
 
The simplest constitutive model in SoilWorks is the linear elastic model in which stress is 
directly proportional to stain as shown in Figure 3.1.1.  The proportional coefficients are the 
modulus of elasticity ( E ) and Poisson’s ratio (ν ).  In 3D analysis, the stress-strain 
relationship can be expressed using the following equation: 
 

 
( )( )

1
1

1
1 2

21 1 2
1 2

2
1 2

2

x x

y y

z z

xy xy

yz yz

zx zx

E

ν ν ν
ν ν νσ ε
ν ν νσ ε

νσ ε
τ γν ν

ν
τ γ

τ γν

− 
 −        −       −    =    + −    −    

    
       − 

 

       (3.1.1) 

 

In 2D analysis, 0yz zx yz zxτ τ γ γ= = = = , and especially for plane strain analysis, 0zε = .  

As ν approaches 0.5, the terms ( )1 2 2ν−  and ( )1 ν−  approach 0 (zero) and ν
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respectively.  This indicates that the stress-strain relationship depends on the constant (ν ) 

that represents the pure volumetric strain.  In addition, as ( )1 2ν− approaches zero,

( )( )1 1 2E ν ν + −   turns into infinity.  From the physical viewpoint, it means that the 

volumetric strain becomes close to zero as ν approaches 0.5. 
 
For numerical analysis, the Poisson’s ratio (ν ) must not be equal to 0.5.  A Poisson’s ratio 
greater than 0.49 may cause numerical instability.  Even though SoilWorks does not permit 
the Poisson’s ratio equal to or greater than 0.5, there is no additional limitation to prevent 
numerical instability.  In case of incompressible solid elements, the user may specify the 
Poisson’s ratio close to 0.5 and make judgment on whether or not any numerical error has 
occurred from the analysis results.  In case of undrained conditions, the “undrained” option 
should be used as explained in Part 4, instead of setting the Poisson ration close to 0.5. 
 
 
3.1.2 Material Properties  
 
The input data for the linear elastic model is listed in Table 3.1.1. 
 

     Table 3.1.1 Input data for linear elastic model  

Input Parameters Remarks 

Modulus of Elasticity ( E )  
Poisson’s Ratio (ν )  

Inc. of Elastic Modulus Increase in modulus of elasticity with height  

Reference Height  
 
 
The linear elastic model does not account for yield strength, and the strain and stress 
results thus may not be realistic.  Cohesion and the friction angle based on the Mohr-
Coulomb failure criterion help compare the computed shear stress with the theoretical 
yielding stress graphically.  Accordingly, in general analysis cases, the Mohr-Coulomb or 
other nonlinear constitutive models are recommended. 
 
SoilWorks can simulate the variation of the modulus of elasticity with respect to height. If the 
increase in the modulus of elasticity with height is zero, the modulus of elasticity is constant, 
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If the increase is not zero, the modulus of elasticity with respect to height can be calculated 
as below.  
 
 ( ) ( )

( )
            

                                    

ref ref inc ref

ref ref

E E Z Z E Z Z

E E Z Z

= + − ≤

= >

           (3.1.2) 

 

where, 

refE  : Modulus of elasticity (user input) 

incE  : Slope of increment of modulus of elasticity  

 refZ
 : Reference depth corresponding to refE  

  

depth

elastic
modulus

refZ

1

refE

incE

 
 

Figure 3.1.2 Schemetic daigram of variation of elastic modulus with depth 
 
 

In Eq. (3.1.2), Z  is the location of the integration point of the element in the finite element 
analysis.  If the integration point is located higher than the reference height refZ , the elastic 

modulus may become less than zero.  In order to prevent negative elastic modulus, the 
elastic modulus refE  is used as the minimum elastic modulus.  

 
The linear elastic model is not suitable for modeling highly nonlinear ground.  It is, however, 
useful for modeling the structural behavior of high stiffness materials compared to soils, 
such as concrete and steel.  

  (3.1.2) 
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3.2 Tresca Model 
 
3.2.1 Introduction  
 
The Tresca model was initially developed to establish a failure criterion for metals.  In 
geotechnical engineering, this constitutive model is widely used to model the undrained 
behavior of ground soil.  It assumes that an object fails if the maximum shear stress at a 
point exceeds the limit stress, k .  This criterion is numerically expressed by the following 
equation: 
 
 

3 1
1
2

kσ σ− =
              

 

k  represents the failure (yield) stress for pure shear when 3σ  and 1σ  are the maximum 

and minimum principal stresses respectively 1 2 3( )σ σ σ≥ ≥ .  The constant k  is a 

function of hardening parameter, which is determined by tests. In order to readily use the 
test properties, Eq. (3.2.1) can be rewritten as, 
 

3 1 yσ σ σ− =       (3.2.2) 

 

where, yσ  is the uniaxial compressive strength. 

 
 
3.2.2 Material Properties  
 
The input data for the Tresca model is shown in Table 3.2.1. 
 

Table 3.2.1: Input data for Tresca model  

Input Parameters Remarks 

Yield Stress ( yσ ) Uniaxial compressive strength 

 
 
 

  (3.2.1) 

  (3.2.2) 



 

 
SoilWorks 

 
29 

Chapter 3 Ground Constitutive models 

3.2.3 Yield Function 
 

Eq. (3.2.2) can be rewritten with the stress invariant 2J  and 0θ 0(0 60 )θ≤ ≤   as, 

 

 1 3 2 0 0
1 2cos cos

33 yJσ σ θ θ π σ  − = − + =    
          (3.2.3) 

 
Rearranging Eq. (3.2.3) results in, 
 

 ( )2 0 2 0
1, 2 sin 0
3 yf J Jθ θ π σ = + − = 

 
           (3.2.4) 

 

Expressing Eq. (3.2.4) in terms of 0,  ,  ρ ξ θ ,  

 

 ( )0 0
1, 2 sin 2 0
3 yf ρ θ ρ θ π σ = + − = 

 
           (3.2.5) 

 

Or, expressing in terms of θ,, 21 JI 6 6
π πθ − ≤ ≤ 

  ,
 

 

 
( )2 0 2

2

2 2 4, sin sin
3 33

2 cos 0

y

y

f J J

J

θ θ π θ π σ

θ σ

    = + − + −        

= − =

         (3.2.6) 

 

This failure criterion does not depend on the hydrostatic pressure ( 1I ) since the effect of 

hydrostatic pressure on the yield surface is not considered.  The Tresca yield surface 
forms a prism with a regular hexagonal section (Figure 3.2.1) parallel with the hydrostatic 
axis in the principal stress space, and a regular hexagon on the deviatoric plane (Figure 
3.2.2(a)). 
 
A number of shortcomings exist when applying the Tresca yield criterion to the soil materials.  
First, it is not correct to assume that the hydrostatic pressure (or confinement pressure) 
does not affect the shear strength of the ground soil.  Second, the Tresca yield criterion 
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exhibits the same failure stress in both compression and tension, whereas the tensile 
strength of ground soil is smaller than the compressive strength.  In addition, the criterion 
does not account for any intermediate principal stresses. 
 
The Tresca yield criterion can, however, simulate reasonable results when the total stress 
analysis is performed on saturated soil under undrained conditions, which is referred to as 

0φ =  analysis.  According to laboratory tests, the shear strength of saturated soil under 

undrained conditions is independent of the hydrostatic pressure (
1I ), thus enabling the use 

of the Tresca yield criterion.  In this case, the limit stress k, which indicates the undrained 
shear strength, ( 0)u uc φ = , must be determined from the unconsolidated, undrained triaxial 

compression tests. 
 

 
 

     Figure 3.2.1 Shape of Tresca yield surface in the 3D space of principal stresses  
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         (a) Projection of yield surface on π -plane         (b) Projection of yield surface on meridian plane at (
6
πθ −= ) 

 
Figure 3.3.2 Tresca yield surfaces on π -plane and meridian plane 
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3.3 von Mises Model 
 
3.3.1 Introduction 
 
The von Mises failure criterion states that a material fails when the octahedral shear stress 

( octτ ) reaches a limit, which is mainly applicable to the analysis of ductile materials such as 

metals.  In addition to its application to ground materials, it is applicable to truss, 
embedded truss and plate elements of steel materials such as anchors, nails and pipe piles. 
 
 
3.3.2 Material Properties  
 
The input data for the von Mises model is shown in Table 3.3.1. 
 

Table 3.3.1 Input data for von Mises model 

Input Parameters Remarks 

Yield Stress ( yσ ) Uniaxial compressive strength 

 
 
 
3.3.3 Yield Function 
 
The von Mises failure (yield) function is expressed using the uniaxial strength as, 
 

 ( )2 23 0yf J J σ= − =             (3.3.1) 

 
The von Mises failure surface forms a circular cylinder with its axis parallel to the hydrostatic 
axis in the principal stress space (Figure 3.3.1).  If the von Mises criterion and the Tresca 

criterion are made coincident at compression and tensile meridian, 0( 0 )cρ θ =   and 

0( 60 )tρ θ =  , the von Mises failure surface becomes a circle circumscribing the Tresca’s 

hexagonal yield surface on the deviatoric plane (π-plane) as shown in Figure 3.3.2 (a). 
 
In this case, the maximum difference between the expected two failure stresses takes place 
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along the pure shear meridian 0( 30 )θ =  , and the ratio of the failure shear stress of the 

von Mises’ criterion to that of the Tresca’s criterion is 2 / 3 1.15= .  On the other hand, if 

the two failure criteria are made coincident with the pure shear (the same k value), the von 
Mises’ circle inscribes the Tresca’s hexagonal yield surface on the π-plane as shown in 
Figure 3.3.2 (b).  In this case, the maximum expected difference between the two failure 

stresses takes place along the compression meridian 0( 0 )cρ θ =   and the tension meridian 

0( 60 )tρ θ =  . 

 
The von Mises failure criterion also retains the shortcomings like the Tresca failure criterion 
being applied to the soil materials in which the tension and compression strengths are equal 
and the shear strength is independent of the hydrostatic pressure.  The von Mises yield 
criterion like the Tresca’s, however, allows appropriate application in the case of undrained 
strength in saturated soil.  The von Mises criterion can be conveniently used since it is free 
from mathematical and numerical complexities stemming from the hexagonal corners as 
present in the Tresca failure surface. 
 

 
 

Figure 3.3.1 Shape of von Mises yield surface in the 3D space of principal stresses 
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(a) In case of uniaxial stress                          (b) In case of pure shear stress 
           Projection of yield surface on π -plane 

 

 
 

(c) Projection of yield surface on meridian plane (
6
πθ = − ) 

 
Figure 3.3.2 von Mises yield surfaces on π -plane and meridian plane 
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3.4 Mohr-Coulomb Model 
 
3.4.1 Introduction  
 
The Mohr-coulomb model is used to simulate the majority of ground materials. SoilWorks 
defines the stress-strain relationship of the model as elasto-perfectly-plastic, as shown in 
Figure 3.4.1(a).  Such an assumption for soil behavior leads to sufficiently reliable solutions 
in nonlinear analysis in a general domain. 
 

σ

ε

Mohr-Coulomb

Real soil

( )φ

q

p

constant:

 
(a) Stress-strain relationship                           (b) Shape of yield function 

 
Figure 3.4.1 Mohr-Coulomb model behavior and yield function 

 
 
There are two main shortcomings for the Mohr-Coulomb model to be applied to soil 
materials.  First, since the failure occurs when the largest Mohr circle is tangential to the 

failure envelope, the intermediate principal stress, 2 1 2 3( )σ σ σ σ≥ ≥ , does not have any 
influence on the failure stress.  This is inconsistent with experimental results.  Second, the 
straight Mohr circle’s meridian and failure envelope result in the constant strength 

parameter, φ , independent of the hydrostatic pressure (or confinement pressure) as shown 

in Figure 3.4.1(b).  This implies that the criterion is accurate in certain limits of confinement 
pressure, but the accuracy diminishes with an increase in the range of confinement 
pressures.  In addition, the discontinuous corner of the yield surface presents difficulties in 
numerical analysis.  Also, the Mohr-Coulomb model cannot describe the compaction of soil. 
 
Despite these limitations, the Mohr-Coulomb model has been widely and successfully used 
in geotechnical engineering due to the ease of application and reliable results within the 
practical confinement pressures. 
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3.4.2 Material Properties  
 
The input data for the Mohr-Coulomb model is listed in Table 3.4.1.  
 

Table 3.4.1 Input data for Mohr-Coulomb model  

Input Parameters Remarks 

Inc. of Elastic Modulus ( incE ) Increase in modulus of elasticity with height 

Inc. of Cohesion ( incc ) Increase in cohesion with height 

Reference Height ( refy )  

Dilatancy Angle (ψ )  

Tensile Strength ( tσ )  

 
 
SoilWorks can simulate variations in elastic modulus and cohesion with respect to height 
using the Mohr-Coulomb model.  The variation in elastic modulus is the same as explained 
in Section 3.1.  In this section, the variation in cohesion is described.  If the increase in 
cohesion relative to height is zero, the cohesion is constant throughout the model.  In case 
of non-zero increment, the cohesion relative to the reference height can be calculated using 
the following equation. 
 

 
( ) ( )

( )
            

                                    

ref ref inc ref

ref ref

c c y y c y y

c c y y

= + − ≤

= >
           (3.4.1) 

 
where, 

refc  : Specified initial cohesion  

incc  : Increment of the cohesion with depth  

 refy  : Reference depth corresponding to refc   
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depth

cohesionrefy

1

refc

incc

 
 

Figure 3.4.2 Schemetic diagram of variation in cohesion with respect to depth 
 
 
In Eq. (3.4.1), y  is the location of the integration point of the element in the finite element 
analysis.  If the integration point is located higher than the reference height, refy , the 

cohesion may become less than zero.  In order to prevent negative cohesion, the cohesion, 

refc
 is used as the minimum cohesion. 

 
 
3.4.3 Yield Function 
 
According to the Mohr’s criterion, the failure is expressed as, 
 
 ( )fτ σ=              (3.4.2) 

 
The limit shear stress (τ ) on a particular plane is related to the normal stress (σ ) acting on 

the same plane.  Eq. (3.4.2) corresponds to the failure envelope of Mohr circles, and the 
failure envelope function, )(σf

 is determined by laboratory tests.  Material failure by the 
Mohr’s criterion takes place at the state of stress in which the largest Mohr circle is in 
contact with the failure envelope.  This means that an intermediate principal stress, 

)( 3212 σσσσ ≥≥  does not influence the failure condition. 

(3.4.2) 
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The simplest geometric form of the Coulomb’s yield surface is a straight line, which is 
defined as, 
 
 tancτ σ φ= +              (3.4.3) 

 
where, 
 c   : Cohesion, vertical axis (τ ) intercept of the failure envelope  
 φ  : Internal friction angle, slope of the failure envelope  
 
The failure criterion defined by Eq. (3.4.3) is referred to as the Mohr-Coulomb failure 
criterion.  Because of its accuracy and simplicity, this has been the most widely used 
ground material. 
 
Expressing the Mohr-Coulomb equation in terms of the principal stresses 1 2 3( )σ σ σ≥ ≥ , 
Eq (3.4.3) can be converted into, 
 

 ( ) ( )
1 3

1 sin 1 sin
1

2 cos 2 cosc c
φ φ

σ σ
φ φ

− +
− =            (3.4.4) 

 
Eq. (3.4.3) can also be expressed using the stress invariants I1 and J2 and θ  as, 
 

( )1 2 1 2
1 1, , sin cos sin sin cos 0
3 3

f I J I J cθ φ θ θ φ φ = − + + − = 
 

        (3.4.5) 

 

Expressing Eq. (3.4.3) in terms of invariants, ,ξ ρ  and 0θ , the equation becomes,  

 

( )0 0

0

, , 2 sin 3 sin
3

                     cos sin 6 cos 0
3

f

c

πξ ρ θ ξ φ ρ θ

πρ θ φ φ

 = − + + 
 

 − + − = 
   

  (3.4.6) 

 
The plastic potential function can be expressed using the format of Eq. (3.4.5) as, 
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0cossinsin
3

1cossin
3
1),,( 2121 =−







 ++−= ψψθθψθ cJIJIg    (3.4.7) 

 
The Mohr-Coulomb failure surface forms an irregular hexagonal pyramid in the 3D principal 
stress space in which its meridian is a straight line, and the failure surface becomes an 

irregular hexagon on the π plane 1 2 3( 0)σ σ σ+ + = .  In order to define the irregular 

hexagon, the lengths of 0tρ and 0cρ  are required, which are calculated by substituting the 

conditions of 0 0( 0, , 60 )tξ ρ ρ θ= = =   and ( 0,ξ = 0 0, 0 )cρ ρ θ= =   into Eq. (3.4.6). 

 

 0
2 6 cos
3 sint

c φρ
φ

=
+

             (3.4.8) 

 0
2 6 cos
3 sinc

c φρ
φ

=
−

            (3.4.9) 

 
From Eq. (3.4.8) and Eq. (3.4.9), 0 0/t cρ ρ  is obtained. 

 

 0

0

3 sin
3 sin

t

c

ρ φ
ρ φ

−
=

+       (3.4.10) 
              
Since the Mohr-Coulomb failure surfaces geometrically form the identical shape on 

deviatoric planes (i.e, for different values of 1I  or ξ ), the ratio of /t cρ ρ  on any deviatoric 

plane remains constant. 
 

 0

0

3 sin
3 sin

t t

c c

ρ ρ φ
ρ ρ φ

−
= =

+
      (3.4.11) 

             
The principal tension stresses in the Mohr-Coulomb model are limited not to exceed a given 
tensile strength.  Such limitation of tension zone is called a Tension-cutoff.  SoilWorks 
provides this tensile limitation based on the Rankine’s yield criterion, which states that the 
failure occurs when the maximum principal stress reaches the tensile stress, used in 
combination with the Mohr-Coulomb model. 
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Figure 3.4.3 Mohr-Coulomb yield surface in 3D principal stress space 
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 (a) Projection of yield surface on π -plane   (b) Projection of yield surface on meridian plane (
6
πθ = − ) 

 
Figure 3.4.4 Mohr-Coulomb yield surfaces on π -plane and meridian plane 
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3.5 Drucker-Prager Model 
 
3.5.1 Introduction  
 
The Drucker-Prager model was introduced to resolve the numerical problems encountered 
at the corners of the Mohr-Coulomb yield surface.  The Drucker-Prager model is 
essentially an extension of the von Mises model, obtained by defining the deviatoric 
stresses as a function of hydrostatic pressure.  It is widely used in practice and is also 
known as the extended von Mises criterion. 
 
 
3.5.2 Material Properties  
 
The input data for the Drucker-Prager model is listed in Table 3.5.1. 
 

Table 3.5.1 Input data for Drucker-Prager model 

Input Parameters Remarks 

Inc. of Elastic Modulus ( incE ) Increase in modulus of elasticity  
Inc. of Cohesion ( incc ) Increase in cohesion  
Reference Height ( refy )  

 
 
The Drucker-Prager model can consider variations in elastic modulus and cohesion with 
respect to height like the Mohr-Coulomb model.  Its internal algorithm is identical to that of 
the Mohr-Coulomb model. 
 
 
3.5.3 Yield Function 
 

The Drucker-Prager failure (yield) criterion can be expressed using the stress invariants 1I  

and 2J  as, 

 

 ( )1 2 2 1, 0f I J J I kα= − − =             (3.5.1) 
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or using the the relationships, 1 / 3Iξ =  and 22Jρ =   

 

 026),( =−−= kf αξρρξ            (3.5.2) 

 

The material constants, α and k , are determined from experiments, which can be 

expressed in terms of cohesion, c  and internal friction angle, φ  of the Mohr-Coulomb 

criterion by coinciding the state of stresses.  If α  is zero in Eq. (3.5.2), the Drucker-
Prager failure criterion becomes identical to the von Mises failure criterion. 
 
Figure 3.5.1 shows the Drucker-Prager failure surface in 3D principal stress space.  The 
failure surface retains the form of a regular cone with the axis of the hydrostatic pressure 
( 1 2 3σ σ σ= = ).  The failure surface can be considered as a smoothened Mohr-Coulomb 

failure surface or as the extension of the von Mises failure surface for hydrostatic pressure-
dependent materials like soils. 
 
The advantages of using the Drucker-Prager model are as follows: 

 
 The failure criterion contains only two material parameters, α  and k leading to a 

simple failure criterion, which can be easily determined by conventional tri-axial 
compression tests. 

 The failure surface is smooth, which renders mathematical convenience even in the 
applications to 3D analysis. 

 Unlike the von Mises model, the model accounts for the effect of the hydrostatic 
pressure on the failure surface. 

 Since the yield surface is a straight line on the meridian plane, the model is especially 
useful even when the curvature of the material’s failure envelope is ignored. 

 
The relationship between the material parameters of the Drucker-Prager and the Mohr-
Coulomb failure criteria is described below: 
 
There are several ways to make the Mohr-Coulomb hexagonal failure surface compatible 
with the Drucker-Prager cone.  When the vertices of the two surfaces are made coincident 
with each other along the spatial diagonal line, only one additional compatible condition is 
necessary for adjusting the size of the Drucker-Prager cone.  For example, if the two 

(3.5.2) 
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surfaces are made coincident along the compressive meridian cρ in which 0 0θ =  , the 

relationships of the material parameters ( , kα and c ,φ ) can be expressed as follows: 

 

 
( ) ( )
2sin 6 cos,

3 3 sin 3 3 sin
ckφ φα

φ φ
= =

− −
           (3.5.3) 

 
The cone corresponding to the parameters in Eq. (3.5.3) circumscribes the hexagonal 
pyramid, and it represents the outer boundary of the Mohr-Coulomb failure surface.  On 
the other hand, the material parameters of the inscribed cone passing through the tensile 

meridian, tρ  in which 0 60θ =  , can be defined using Eq. (3.5.4). 

 

 
( ) ( )
2sin 6 cos,

3 3 sin 3 3 sin
ckφ φα

φ φ
= =

+ +
    (3.5.4) 

          
The relationships of the parameters like the above can be also obtained for other cases, but 
are rarely useful.  As an example of plain strain however, the Drucker-Prager and Mohr-
Coulomb criteria are expected to show an identical yielding load (or plastic failure load) for a 
bearing capacity problem (Chen, 1975).  In order to determine the parameters, α and k in 
such a case, the following two conditions need to be used: 
 

 Plane strain deformation condition 

 Identical rate of dissipation of mechanical energy per unit volume 

 
Based on the above two conditions, the relationships between the material parameters can 
be formulated (Drucker and Prager, 1952). 
 

 
( ) ( )1/ 2 1/ 22 2

tan 3,
9 12 tan 9 12 tan

ckφα
φ φ

= =
+ +

   (3.5.5) 

          
In case of plane strain, using the relationship in Eq. (3.5.5) converts the failure criterion of 
Eq. (3.5.1) to Eq. (3.4.3) of the Mohr-Coulomb model. 
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Figure 3.5.1 Drucker-Prager yield surface in 3D principal stress space 
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 (a) Yield surface on π -plane                 (b) Yield surface on meridian plane  
 

Figure 3.5.2 Drucker-Prager yield surfaces on π -plane and meridian plane 
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3.6 Hyperbolic Model (Duncan-Chang Model) 
 
3.6.1 Introduction 
 
The stress-strain relationship for soil becomes nonlinear as it approaches close to failure.  
A nonlinear elastic model simulates such a ground behavior by changing the soil 
parameters.  SoilWorks uses the equation suggested by Duncan and Chang (1970) to 
determine the soil parameters.  In this equation, the stress-strain curve is defined as a 
hyperbolic function.  The soil parameters are a function of the confinement stress and 
shear stress.  This nonlinear material model is very useful because it can be defined only 
by the soil parameters, which can be easily obtained from triaxial tests or from the 
literatures. 
 
The nonlinear stress-strain curve of Duncan and Chang is expressed as a hyperbolic curve 

in the relationship of the shear stress 1 3( )σ σ−  and axial strain. Depending on the state 

and path of the stress, three soil parameters are required, which are initial modulus of 

elasticity ( )initE , tangential modulus of elasticity ( )tanE  and unloading-reloading modulus of 

elasticity ( )ulE  as shown in Figure 3.6.1. 
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Figure 3.6.1 Nonlinear stress-strain relationship 
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3.6.2 Material Properties 
 
The input data for the hyperbolic model is listed in Table 3.6.1. 
 

Table 3.6.1 Input data for hyperbolic model 

Input Parameters Remarks 

Poisson’s Ratio (ν ) Constant used when bK = 0 

Cohesion ( c )  

Internal Friction Angle (φ )  

Initial Loading Modulus ( K )  

Exponent ( n ) Exponent for initial stiffness  

Failure Ratio ( fR )  

urK  Unloading-reloading modulus 

bK  Bulk modulus number 

Exponent ( m ) Exponent for bulk modulus 

Min. Tangential Modulus  

Min. Confinement Stress ( minσ )  

Atmospheric Pressure( aP )  

 
 
The material parameters and exponents for a nonlinear model can be expressed by plotting 
the triaxial test results on a log vs log graph as shown in Figure 3.6.2.  The values of 
stiffness, apE / and 

am pB / , can be calculated from Eq. (3.6.1 & 3.6.2).  These results 

are plotted against 
ap/3σ  in Figure 3.6.2. The initial loading modulus, K can be obtained 

from the graph at 3 1apσ =  with the vertical axis representing aE p .  The slopes, n and 

m, from the straight lines connecting the results are the exponents that define the influence 
of confinement stress. 
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Figure 3.6.2 Properties of nonlinear ground material model 
 
 

The bulk modulus, mB , is defined as follows: 

 

 ( )1 2 3 3
m

v

B
σ σ σ

ε
∆ + ∆ + ∆

=
∆

           (3.6.1) 

 
where, 
 σ∆  : Change in principal stress  

 vε∆  : Change in volumetric strain  

 
 
3.6.3 Initial Modulus 
 
When the ground is subjected to no shear stress (i.e., 031 =−σσ ), the stress-strain 

behavior can be modeled using the initial elastic modulus, iE .  This initial modulus is 

controlled by the confinement stress, 
3σ , which is expressed as, 

 
 

3

n

i L a
a

E K p
p
σ 

=  
 

              

 

(3.6.2) 
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where, 

iE  : Initial modulus, which is a function of confinement stress 

LK  : Loading coefficient 

ap  : Atmospheric pressure (a factor used for normalization) 

3σ  : Confinement pressure 

n  : Exponent to define the influence of confinement pressure for the 
initial modulus (range of values: 0-1) 

 
If n  is equal to 1.0, the initial modulus, iE  is directly proportional to the confinement 

stress.  If it is zero, the initial modulus is independent of the confinement stress. 
 
If the confinement stress is zero or negative, the initial modulus can also become a zero or 
negative value.  In order to prevent such a problem from happening, SoilWorks sets a 
minimum value for the confinement stress to 0.01

ap . 

 
 
3.6.4 Tangential Modulus 
 
Soil is known to follow a loading path once it becomes subjected to a shear stress greater 
than a precedent load.  When the soil follows the loading path, its constitutive behavior is 

governed by the tangential modulus, tE .  This modulus in the Duncan and Chang model 

is defined as a function of material property, triaxial deviatoric stress 1 3( )σ σ− and 

confinement stress 3( )σ . 

 

 
( )( ) 2

1 3

3

1 sin
1

2 cos 2 sin
f

t i

R
E E

c
σ σ φ

φ σ φ
 − − 

= − + 
           (3.6.3) 

 
 
where, 

tE  : Tangential modulus 

iE  : Initial tangential modulus 

φ  : Internal friction angle 

http://endic.naver.com/enkrEntry.nhn?entryId=7329cef0539b4c37b6f721db422809cb&query=%EC%82%BC%EC%B6%95%ED%8E%B8%ED%96%A5%EC%9D%91%EB%A0%A5�
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c  : Cohesion 

fR  : Failure ratio between the asymptotic curve of a parabolic curve 
and the maximum shear strength (range of values: 0.75-1) 

 
The minimum value of tE  is set to 

ap . If this value is too small, it may cause convergence 

problems. 
 
 
3.6.5 Unloading-Reloading Modulus  
 
When the ground is unloaded from the state of a very large shear stress, a nonlinear model 
uses the unloading- reloading modulus, urE .  The unloading-reloading modulus is 

calculated by a method as used for the initial modulus, except that the unloading-reloading 
modulus number, urK  is used instead of LK .  Therefore, its equation is defined as, 

 

 3

n

ur ur a
a

E K p
p
σ 

=  
 

             (3.6.4) 

 
Unlike the tangential modulus, the unloading-reloading modulus, urE , is independent of the 

level of shear stress.  If the unloading-reloading modulus number, urK is not specified, 

urK  is defined as the loading modulus number, LK . 

 
 
3.6.6 Poisson’s Ratio 
 
The Poisson’s ratio of a nonlinear elastic model can be defined as a constant irrespective of 
the state of stress or can be calculated from the bulk modulus of the ground depending on 
the confinement stress.  In the case of the latter, the bulk modulus is defined using the 
following equation: 
 

 3

m

m b a
a

B K p
p
σ 

=  
 

             (3.6.5) 
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where, 

 mB  : Bulk modulus  

 bK  : Bulk modulus number (range of values: 200-700) 

 m   : Bulk modulus exponent (range of values: 0-1) 
 
The relationship of the bulk modulus to the Poisson’s ratio can be expressed based on the 
elastic theory as, 
 

 
( )3 1 2m

EB
ν

=
−

             (3.6.6) 

 

From the Eq. (3.6.6), if the Poisson’s ratio is zero, 3mB E= . If Poisson’s ratio is 0.49, 

16.67mB E= .  It is recommended that a Poisson’s ratio in the range between 0 and 0.49 

be used. 
 
 
3.6.7 Yielding Zone 
 
The yielding condition for a nonlinear elastic model cannot be defined.  However, a yielding 
zone of satisfying the following criterion can be defined in order to show the zone of large 
shear stress. 
 
 

1 3 1 3 sin cos
2 2 fR cσ σ σ σ φ φ− +

− ≥     (3.6.7) 

            

The failure ratio, fR in the Duncan and Chang equation is used as Eq. (3.6.8). 

 
 ( ) ( )1 3 1 3ff ult

Rσ σ σ σ− = −             (3.6.8) 

 

The ultimate strength term, ( )1 3 ultσ σ− , represents the asymptotic curve in which the 

hyperbolic stress-strain curve approaches to large strains.  Also ( )1 3 fσ σ−  is the 

deviatoric stress at failure. 
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The following condition is obtained from the Mohr circle:
 
 

 

 ( ) ( )1 3 1 3 sin cos
2 2

ult ult c
σ σ σ σ

φ φ
− +

− =            (3.6.9) 

 
Substituting Eq. (3.6.8) into Eq. (3.6.9), Eq. (3.6.10) can be derived.  
 

 
( ) ( )1 3 1 3 sin cos

2 2
f f

fR c
σ σ σ σ

φ φ
− +

− =            (3.6.10) 

 
Comparing the two equations, Eq. (3.6.7) and Eq. (3.6.10), the inequality equation can be 
said to provide an index of how close the state of stress is to the state of failure. 
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3.7 Hoek-Brown Model 
 
3.7.1 Introduction  
 
Hoek and Brown (1980) proposed a concept of equivalent continuum for defining the effect 
of stress reduction due to the failure of a jointed rock mass.  A failure function was 
proposed to distinguish intact rock and broken rock.  Once the rock failure is defined by the 
failure function, specific coefficients defining the failure function are reduced to simulate the 
stress reduction phenomenon.  The method proposed by Hoek and Brown defines the 
uniaxial compression strength of rock, which cannot be considered by the Mohr-Coulomb 
method.  This advantage led to a wide use of the Hoek-Brown model in accurately 
reflecting the behavior of rock. 

 
 
3.7.2  Material Properties  
 
The input data for the Hoek-Brown model is listed in Table 3.7.1. 
 

Table 3.7.1 Input data for Hoek-Brown model  

Input Parameters Remarks 

Initial m Initial m at the intact state 
Initial s Initial s at the intact state 
Residual m m at the broken state 
Residual s s at the broken state 
Uniaxial Compression Strength  

 
 
 
3.7.3 Yield Function 
 
A commonly used failure criterion in rock mechanics is Hoek-Brown failure criterion (Eq. 
(3.7.1), which ignores the intermediate principal stress. 
 

2
1 3 3c cm sσ σ σ σ σ= + +            (3.7.1) 
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where, cσ represents the unconfined uniaxial compressive strength, and m and s are 
empirical parameters indicating the extent of breakage of the rock mass. 
 
For the convenience of elasto-plastic finite element calculations, Eq. (3.7.2) is expressed 
using the stress invariants. 

 

2 21
2

sin4 cos 2 cos 0
33HB c c c
IF J m m sθθ σ θ σ σ = + + + − = 

 
        (3.7.2) 

 

1I is the first stress invariant; 2J is the second deviatoric stress invariant; and cσ is the 
uniaxial compressive strength of the rock mass. 
 
The Hoek-Brown model retains the shape of a pointed bullet gradually enlarging along the 
hydrostatic axis in the space of principal stresses.  The deviatoric plane shape shows a 
hexagonal shape consisted of 6 parabolic surfaces.  This shape causes undesirable 
singularity at the vertex where the surfaces meet and the gradient is non-unique.  In order 
to mitigate any singularities, an elliptical function is used to describe the variation of the 
trace of the surface in the deviatoric planes for a sextant of the stress space, i.e., 

/ 6 / 6π θ π− ≤ ≤ .  SoilWorks uses the modified Hoek-Brown criterion proposed by Wan 
(1994). 
 

2 2 * * 2( ) ( ) 3 0c c cF q g qg p sθ σ θ σ σ= + + − =           (3.7.3) 

 

where, * / 3c cmσ σ= , 23q J= , 1 / 3p I=   and the expression for deviatoric plane shape, 

( )g θ  is given by, 
 

2 2 2

2 2

4(1 )cos ( / 6 ) (1 2 )( )
2(1 )cos ( / 6 ) (2 1)

e eg
e e D

π θθ
π θ

− + + −
=

− + + −
          (3.7.4) 

 
where, 

2 2 24(1 )cos ( / 6 ) 5 4D e e eπ θ= − + + −
 

 
Figure 3.7.1 shows the Hoek-Brown yield surface in the principal stress space. 
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Figure 3.7.1 Hoek-Brown failure surface  

 
 

  



 

 
SoilWorks 

 
55 

Chapter 3 Ground Constitutive models 

3.8 Modified Cam-Clay Model 
 
3.8.1 Introduction  
 
The Modified Cam-clay model is a critical state model while being an elasto-plastic 
hardening material model.  The model was numerically formulated on the bases of 
Atkinson and Brandsby (1978) and Britto and Gunn (1987).  The stresses used to 
formulate the Modified Cam-clay model are not the total but all effective stress factors. 
 
Figure 3.8.1(a) shows the relationship between the pressure and the change in general 
ground volume, which includes both normal consolidation and over-consolidation.  The 
over-consolidation line is also known as the “swelling” line, which considers the state of 
stress during the over-consolidated stage.  The applied stress increases along the over-
consolidation line moving onto the normal consolidation line.  Once it crosses the 
intersection of the two lines, additional increase in stress is represented by the state of 
stress following down the normal consolidation line. 
 

 
                                      (a)                  (b) 

 
Figure 3.8.1 Similarity between volume change vs. pressure and stress vs. strain 

 
Figure 3.8.1 shows similarity between the graph of volume change vs. pressure and the 
graph of stress-strain relationship.  If Figure 3.8.1(a) is rotated counter-clockwise by 90 
degrees, it becomes similar to Figure 3.8.1(b) of the characteristics of the elastic-hardening 
plastic stress-strain curve.  That is, the over-consolidation line resembles the initial linear 
elastic zone, while the normal consolidation line resembles the hardening plastic zone of the 
stress-strain relationship. 
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3.8.2 Material Properties  
 
The input data for the Modified Cam-Clay model is listed in Table 3.8.1. 
 

Table 3.8.1Input data for Modified Cam-clay model 

Input Parameters Remarks 

Over Consolidation Ratio (OCR) 
The highest stress experienced 
divided by the current stress 

Slope of Consol. Line ( λ ) Slope of normal consolidation line 

Slope of Over Consol. Line (κ ) Slope of over-consolidation line 

Pre-Consolidation Void Ratio ( ce ) Pre-Consolidation void ratio 

Critical State Specific Vol. (Γ ) Specific volume at p′  =1 

Slope of Critical State Line ( M ) Slope of critical state line 

Pre-Consolidation Load ( cp′ ) Pre-consolidation pressure 

Pre-Consolidation Vertical Stress ( cσ ) Pre-consolidation vertical stress 
 
The over-consolidation ratio, OCR, above can be obtained from site investigation results, 
literatures, measured data and analysis of precedence of adjacent design.  Under normal 
consolidation, OCR is set to 1. 
 

The material properties, ,  ,  ,  Mλ κ Γ  listed in Table 3.8.1 can be further explained in Figure 

3.8.2.  Especially M can be defined by straight line slope of the critical state line (Figure 
3.8.2(a)) projected onto the qp −'  plane as in Figure 3.8.2(b).  

 

critical state line

q

P′

M

isotropic normal 
consolidation line

critical state line

overconsolidation lineλ
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Γ

ln(1)
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 (a) Virgin and over-consolidation curves               (b) Critical state line 

Figure 3.8.2. Modified Cam-clay model material property definition 
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The relationship of the compression versus vertical pressure of soil can be generally 

obtained from one dimensional consolidation tests.  From the graph of ( )10log p versus 

void ratio ( )e , the compression index ( cC ) and the recompression index ( sC ) can be 

generally obtained.  The compression index and the recompression index are related to 
&λ κ  by the following equations: 

 

 2.303

2.303

c

s

C

C

λ

κ

=

=
              (3.8.1) 

 
In addition, λ and κ can be estimated from the graph of the void ratio versus )ln( p  

instead of the graph of the void ratio versus ( )10log p . 

 
Since the Modified Cam-Clay model was formulated on the basis of the unit, kN-m, the 
same unit must be used for compression and recompression index calculations.  The same 
unit is also recommended for the unit setting in the program. 
 
The factor, N  can be estimated by projecting the normal consolidation line onto the 

vertical line of p  =1.0 of the graph of V  vs. ( )ln p .  Once N is calculated, the critical 

state specific volume, Γ can be obtained by Eq. (3.8.2). 
 

 ( ) ln 2N λ κΓ = − −              (3.8.2) 

 
The parameterΓ is defined by the intersection of the critical state line and the function line 
with 1.0p =  as shown in Figure 3.8.2(a). 
 
From test data, e-logP curve is computed as shown in following figure. The pre-

consolidation state means the inflection point has pre-consolidation void ratio( ce ) and pre-

consolidation pressure ( cp ) in the figure below. 
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critical state line
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     Figure 3.8.3 Graph of Pre-Consolidation State 
 
The critical state specific volume and the pre-consolidation specific volume is represented 
by using pre-consolidation void ratio. 
 

1c ceΓ = −
                                                 (3.8.3) 

 
The slope of the critical state line, M , can be estimated by the relationship of the effective 

shear resistance angle (obtained by drainage tests), where φ′  is the effective internal 

friction angle of the effective stress concept obtained from triaxial compression tests. 
 

 6sin
3 sin

M φ
φ
′

=
′−
             (3.8.4) 

 

In SoilWorks, the pre-consolidation pressure, cp′  can be automatically calculated by the 

program, specified by the user or computed by critical state stress.  The auto-calculation 
method is explained in Eq. (3.8.17) in detail.  The user defined value must be equal to or 
greater than the value of Eq. (3.8.17) to secure convergence in numerical analysis. 
 
In order to use the Modified Cam-Clay model, other important data are required, which are 
the state of the present (initial) soil stress and the initial yield surface.  Composing the state 
of the initial soil stress is relatively simple, which can be obtained using the same 
procedures as for other nonlinear analyses.  The initial yield surface can be defined by 

specifying the pre-consolidation pressure, cp′ , or by calculating cp′ from the initial in-situ 
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stresses with the over-consolidation ratio (OCR).  Refer to Chapter 3.8.4 for details. 
 
 
3.8.3 Yield Function  
 
The yield function of the Modified Cam-clay model is shown in Figure 3.8.3. 
 

 

Modified Cam-clay

0.5X CP P′ ′=
CP′

q

P′

 
 

Figure 3.8.4 Yield function of Modified Cam-clay model 
 

 
 
The yield function of the Modified Cam-Clay model is given by Britto and Gunn, 1987 (Eq. 
3.8.5). 
 

 2 2 2 2
cq M p p M p′ ′ ′= −              (3.8.5) 

 

where, cp′  is pre-consolidation pressure. 

  
The peak mean stress (p’x) is used to determine the magnitude of the yield surface for the 
Modified Cam-clay model.  The peak mean stress is the isotropic pressure when the 
ground reaches the critical state as shown in Figure 3.8.4.  The shear stress, q at the 
critical state is given by Eq. (3.8.6). 
 

 xq Mp′=               (3.8.6) 
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Substituting the value ( q ) into the yield function results in Eq. (3.8.7). 
 

 2c xp p′ ′=               (3.8.7) 

 
Therefore, the yield function, F for the Modified Cam-clay model can be written as, 
 

 
2

2 22 x
qF M p M p
p

′ ′= + −
′

            (3.8.8) 

 
where, 

1

2

3
3

Ip

q J

′
′ =

=
       (3.8.9) 

 
The equations representing the over-consolidation line and the critical state line can be 

used to determine the peak mean stress ( xp′ ).  As shown in Figure 3.8.4, the specific 

volume ( xV ) at the critical state with respect to a specific over-consolidation line can be 

written as Eq. (3.8.10). 
 
 0 0ln lnx xV V p pκ κ′ ′= + −             (3.8.10) 

normal consolidation line

critical state line
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   Figure 3.8.5 Definition of ground properties for Modified Cam-clay model 
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The specific volume, Vx , can be calculated from the critical state line.  
 
 lnx xV pλ ′= Γ −              (3.8.11) 

 

Eliminating the specific volume term, xV  from the above two equations, an equation for the 

peak mean stress, 
xp′  is derived as Eq. (3.8.12). 

 

 0 lnexpx
V pp κ
λ κ

′Γ − − ′ =  − 
            (3.8.12) 

 
 

3.8.4 Initial Condition  
 
The initial ground condition together with the initial stress is defined by the initial specific 
volume, 0V .  The initial stress must be defined in an analysis with the Modified Cam-clay 

material model.  In order to calculate V0, the initial pre-consolidation pressure ( cp' ) must 

be known.  The relationship between the initial specific volume and the pre-consolidation 
pressure is illustrated in Figure 3.8.5. 
 

SoilWorks provides two methods of defining the pre-consolidation pressure, cp′ , either 

user-defined or auto-calculated by the program.  SoilWorks can automatically calculate the 
pre-consolidation pressure from the in-situ stresses, over-consolidation ratio (OCR), and the 

lateral earth pressure coefficient at rest ( 0K ).  If the pre-consolidation pressure is 

undefined, the following procedure is used to estimate the pre-consolidation pressure.  The 
initial stress in Modified Cam-clay model analysis means the current initial stress state, 
which is given by Eq. (3.8.13). 
 

 { }

0

0
0

0

0

X

Y

Z

XY

σ
σ

σ
σ
τ

′ 
 ′ ′ =  ′ 
  

             (3.8.13) 
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The maximum vertical stress that the ground has ever experienced can be usually 
determined by Oedometer tests.  The over-consolidation ratio (OCR) is defined as the ratio 
of the highest vertical stress in the past ( maxvσ ′ ) to the current vertical stress (

v'σ ).  The 

user defines the OCR depending on the type of ground.  The relationship between the 
maximum vertical stress, maxvσ ′  and the maximum lateral stress, maxhσ ′  is approximated 

using the lateral earth pressure coefficient (K0). 
 

 0

max 0 max

1 sin

h v

K
K

φ
σ σ

′= −
′ ′=

             (3.8.14) 

 

If the shear stress is assumed to be zero, the maximum stress vector ( maxσ ′ ) can be written 

as Eq. (3.8.15). 
 

 

( )
( )
( )

max 0 0

max 0
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max 0 0

OCR
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OCR
0 0

X Y

Y Y

Z Y

K

K

σ σ
σ σ
σ σ

′ ′  
  ′ ′   ′ = =   ′ ′   

      

σ            (3.8.15) 

 
The historical peak mean stress, maxp′ and maximum shear stress, maxq  are as follows: 

 

 
( )

( ) ( ) ( )

max max max

2 2 2
max max max max max max

1
3
1
2

m x y z

m x y y z z x

p

q

σ σ σ

σ σ σ σ σ σ

′ ′ ′ ′= + +

′ ′ ′ ′ ′ ′ ′= − + − + −
     (3.8.16) 

 
The pre-consolidation pressure, cp′  can be determined by substituting Eq. (3.8.16) into the 

yield function Eq. (3.8.5) of the Modified Cam-clay model. 
 

 ( )2 2 2
max max2 2

max

1
cp q M p

M p
′ = +             (3.8.17) 

 
Once the pre-consolidation pressure, cp′  is defined by the user or calculated by Eq. 

(3.8.17), the initial specific volume (
0V ) can be determined.  First, the intersection of the 

normal consolidation line, N  and the vertical axis (i.e., point at 0'ln =p ) is obtained by 
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Eq. (3.8.18). 
 

 ( ) ln 2N λ κ= Γ + −              (3.8.18) 

 
Next, the specific volume at the critical state can be found from the normal consolidation 

line passing through the pre-consolidation pressure, cp′ . 

 
 lnc cv N pλ ′= −              (3.8.19) 

 

Also, the initial specific volume, 0V  can be expressed as Eq. (3.8.20) from the over-

consolidation line passing through the pre-consolidation pressure, cp′ . 

 

 0
0

ln c
c

pv v
p

κ
 ′

= +  ′ 
             (3.8.20) 

 

From this equation, the initial mean stress ( 0p′ ) can be obtained from the initial stress using 

Eq. (3.8.21). 
 

 ( )0 0 0 0
1
3 x y zp σ σ σ′ ′ ′ ′= + +             (3.8.21)  
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3.9 Sekiguchi-Ohta Model 
 
3.9.1 Introduction 
 
The Sekiguchi-Ohta (1977)1 model is an extended model of the Ohta (1971)2 model on the 
basis of the dilatancy theory proposed by Shibata (1963)3.  This model together with the 
Cam-Clay model is a representative cohesive soil model that can consider not only the 
elasto-plastic but also the elasto-viscoplastic behavior.  Both models can be used in 
consolidation analysis.  In addition, this model can be combined with other material models 
and elements in SoilWorks. 
 
 
3.9.2 Material Properties 
 
3.9.2.1 Elasto-plastic Material Properties 

 
The input data required to define the elasto-plastic behavior of the Sekiguchi-Ohta model is 
listed in Table 3.9.1. 
 

Table 3.9.1 Elasto-plastic material properties for Sekiguchi-Ohta model 

Input Parameters Remarks 

Over Consolidation Ratio (OCR) Over consolidation ratio 
Pre-Consolidation Void Ratio ( ce ) Pre-consolidation void ratio 

Slope of Consol. Line ( λ ) Slope of normal consolidation line 

Slope of Over Consol. Line (κ ) Slope of over-consolidation (swelling) line 

Coefficient of dilatancy ( D ) Coefficient of dilatancy 
Coefficient of earth pressure  

at pre-consolidation ( 0CK ) 
Coefficient of earth pressure at rest at the 
time of pre-consolidation 

Pre-Consolidation Vertical Stress( vcσ ) Pre-consolidation vertical stress 

 
 
The over-consolidation ratio, OCR, above can be obtained from site investigation results, 
literatures, measured data and analysis of precedence of adjacent design.  Under normal 
consolidation, OCR is set to 1. 
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The material properties, ,  λ κ  listed in Table 3.9.1 are identical to the descriptions outlined 

for the Modified Cam-clay model in Figure 3.8.2. 
 
As explained in the Modified Cam-clay chapter, the compression index and swelling index 

are determined by / 2.303cCλ =  and / 2.303rCκ =  of Eq. (3.8.1).  In addition, λ  and 

κ can be estimated from a graph of ( )ln p  versus void ratio instead of a graph of ( )10log p  

versus void ratio. 
 
The coefficient of dilatancy, D  can be calculated from triaxial CD tests under uniform 

pressure, p′  using Eq. (3.9.1). 

 

( )01
D

M e
λ κ−

=
−       (3.9.1) 

 

M  is the slope of the critical state line, which can be calculated using the internal friction 
angle by Eq. (3.8.3). 
 

The coefficient of earth pressure at rest at the time of pre-consolidation, 0CK  can be 

obtained from triaxial 0K  consolidation tests. 

 
 
3.9.2.2 Elasto-viscoplastic Material Properties 
 
In addition to the elasto-plastic material properties, two additional properties are required to 
define the elasto-viscoplastic material model. 
 
The coefficient of secondary consolidation, α  can be determined by Oedometer tests. 
 

Table 3.9.2 Elasto-viscoplastic material properties for Sekiguchi-Ohta model 

Input parameters Remarks 

Coefficient of secondary consolidation (α )  

Initial volumetric strain ratio ( 0ν )  
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The initial volumetric strain ratio, 0ν  is the volumetric strain ratio at the time when 
secondary consolidation begins, which is given by, 
 

 0
0t
αν =        (3.10.2) 

 
where, 0t  is the time when primary consolidation ends. 
 
 
3.9.2.3 Auto-calculation of Material Properties 
 
The Sekiguchi-Ohta model requires some material properties, which can be obtained only 
through difficult tests such as triaxial tests.  SoilWorks automatically calculates such 
properties using other readily obtainable material properties. 
 
Upon clicking “Auto-calculate Additional Parameters” as shown in Figure 3.9.1, the input 
dialog changes as shown in Figure 3.9.2. 
 
SoilWorks provides the “Karibe” method and “Empirical” method in order to calculate the 
additional parameters. 
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Figure 3.9.1 Dialog for Additional Parameters 
 

 
 

Figure 3.9.2 Auto-calculate Additional Parameters 
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Karibe Method 
 
The Karibe equation basically requires the following input parameters: 
 

Table 3.9.3 Input data for Karibe method 

Input Parameters Remarks Applicable Models 

Plastic index ( pI )  
Elasto-plastic,  

Elasto-viscoplastic 

Compression index ( cC ) Optional 
Elasto-plastic,  

Elasto-viscoplastic 

Slope of Over Consol. Line (κ ) 
Slope of over-consolidation 
(swelling) line 

Elasto-plastic,  
Elasto-viscoplastic 

Over consolidation ratio (OCR)  
Elasto-plastic,  
Elasto-viscoplastic 

Drainage distance ( H ) Unit: cm Elasto-viscoplastic 
 
 
The following material properties are auto-calculated using the above parameters: 
 

 0.015 0.007 pIλ = +       (3.9.3) 

 0 1 sincK φ′= −       (3.9.4) 

 ( )01
D

M e
λΛ

=
+       (3.9.5) 

 
01

e

e
αα =
+        (3.9.6) 

 ( )0 2 90%v vH T c
αν =       (3.9.7) 

 
Particular attention should be given that the unit of the drainage distance, H  in Eq. (3.9.7) 

is fixed to cm.  In case the compression index, cC  is user-defined, λ  in Eq. (3.9.3) is 

calculated using the following equation: 
 
 0.434 cCλ =       (3.9.8) 
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M  used in Eq. (3.9.3-7) is determined using Eq. (3.8.3). The internal friction angle, φ′ , 

the irreversibility ratio and the initial void ratio are calculated using the following equations: 
 

 sin 0.81 0.233log pIφ′ = −      (3.9.9) 

/ 1.75MΛ =       (3.9.10) 

0 3.78 0.156e λ= +       (3.9.11) 

0.05 /eα λ=       (3.9.12) 

( )2log 0.025 0.25 1 / minv pc I cm= − − ±     (3.9.13) 

 ( )90% 0.848vT =       (3.9.14) 
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Empirical Method 
 
The empirical method requires the following parameters: 
 

Table 3.9.4 Input data for Empirical method 

Input Parameters Remarks Applicable Models 

Plastic index ( pI )  
Elasto-plastic,  

Elasto-viscoplastic 

Compression index ( )  
Elasto-plastic,  

Elasto-viscoplastic 

Swelling index ( rC ) Optional 
Elasto-plastic,  
Elasto-viscoplastic 

Over consolidation ratio (OCR)  
Elasto-plastic,  
Elasto-viscoplastic 

Drainage distance ( H )  Elasto-viscoplastic 
 
 
The following properties are auto-calculated using the above parameters: 
 
 0.434 cCλ =       (3.9.15) 
 / 10κ λ=        (3.9.16) 
 0cK  : Identical to Eq. (3.9.4) 

 D  : Identical to Eq. (3.9.5) 
 α  : Identical to Eq. (3.9.6) 
 0ν  : Identical to Eq. (3.9.7) 
 
In case the swelling index, rC  is user-defined, Eq (3.9.16) is modified as below.  
 
 0.434 rCκ =       (3.9.17) 

 
When using the auto-calculation function, the auto-calculated internal friction angle, φ′  is 
used rather than using the user-defined angle. 
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3.9.3 Yield Function 
 
3.9.3.1 Yield Function of Elasto-plastic Model 
 
The yield function of the Sekiguchi-Ohta elasto-plastic model is as follows: 
 

 ( ) *

0

, ln 0p p
v v

pf MD D
p

ε η ε
′

′ = + − =
′

σ     (3.9.18) 

 

where, p
vε  is the plastic volumetric strain, and *η  is the generalized stress ratio, which is 

defined as, 
 

 * 0

0

3
2 p p

η = −
′ ′

s s
      (3.9.19) 

 
where, 
 p′  : Average effective stress  
 s  : Deviatoric stress vector  

 0s  : Deviatoric stress vector for pre-consolidation stress 

 0p′  : Average effective stress for pre-consolidation stress 

 
Figure 3.9.3 illustrates the yield surface shape of the Sekiguchi-Ohta model in the principal 
stress space. 
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0K -line

Yielding surface

cp′ p′

q1σ

2σ 3σ  
 

(a) Shape of yielding surface in deviatoric and meridian plane 
 

 
 

(b) 3D view in principal stress space 
 

Figure 3.9.3 Yield surface shape of Sekiguchi-Ohta model 
 
 
 
3.9.3.2 Yield Function of Elasto-viscoplastic Model 
 
The yield function of the Sekiguchi-Ohta elasto- viscoplastic model is as follows: 
 

( ) ( )0, ln 1 exp 0p vp
v v

fv tf ε α ε
α α

  ′ ′ = + − =      

σ
σ


   (3.9.20) 

 
where,  
 α  : Coefficient of secondary consolidation 

 0ν  : Initial volumetric strain ratio 

 t  : Duration of consolidation 
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 vp
vε  : Viscoplastic volumetric strain  

 

( )f ′σ  used in Eq. (3.9.20) is defined as follows using Eq. (3.9.18): 

 

( ) *

0

ln pf MD D
p

η
′

′ = +
′

σ      (3.9.21) 

 
 
3.9.4 Initial Condition 
 
The initial condition of the Cam-clay type of cohesive models is generally determined based 
on the pre-consolidation state.  Therefore, determining the initial condition is thus a very 
important factor for these material models.  In the case of the Sekiguchi-Ohta model, the 
soil modulus can separately consider the pre-consolidation state and the initial state.  By 

reflecting 0p′  and 0s  representing the initial stress in the yield function, the behavior of 

cohesive soil can be more accurately evaluated. 
 
The effective stress at the initial state can be expressed as, 
    

 

iXX

iYY
i

iZZ

iXZ

σ
σ
σ
τ

′ 
 ′ ′ =  ′ 
  

σ              (3.9.22) 

 

If the direction of gravity is defined as –Z axis, the vertical stress, 0ZZσ ′  for pre-

consolidation is calculated as follows: 
 

0ZZ iZZ OCRσ σ′ ′= ×       (3.9.23) 

 

Therefore, the effective stress, o′σ  for pre-consolidation can be formulated as follows: 
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0 0 0
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σ σ
σ σ
σ σ
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′ ′ ×   
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   ′   

σ      (3.9.24) 

 

Using the above, 0p′  and 0s  are given by, 

 

 
0 0 0

0

0 0 0

3
XX YY ZZp

p

σ σ σ′ ′ ′+ +′ =

′ ′= −sσ1
     (3.9.25) 

 

where, { }1,1,1,0 T=1   
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3.10 Modified Mohr-Coulomb Model  
 
3.10.1  Introduction 

The Modified Mohr-Coulomb model is an advanced material model that can simulate the 
behavior of different types of soil. It is based on an elasto-plastic formulation and can 
capture the basic properties of soil material, namely a pressure dependent shear 
strength (with soil dilatancy), irrecoverable compaction and nonlinear elastic unloading. 
This leads to a so-called double hardening model: One yield-surface for shear failure 
and one yield-surface for compaction. The Modified Mohr-Coulomb model combines 
power-law nonlinear elastic behavior, with exponential cap-hardening with Rowe's 
dilatancy rule and a parabolic hardening of the friction angle as function of the plastic 
shear-strain according to Duncan-Chang.  

3.10.2  Material Properties 

The parameters defining the Modified Mohr-Coulomb model are listed in Table 3.10.1. 

Table 3.10.1  Input material property parameters for Modified Mohr-Coulomb model 

Input parameters Descriptions 
Secant Stiffness in Tri-axial Test 
(E50ref) 

Reference secant stiffness in standard 
drained tri-axial test 

Tangential Stiffness Primary 
Oedeometer Test (Eoedref) 

Reference tangential stiffness for primary 
oedometer loading 

Unloading/Reloading Stiffness (Eurref) Reference unloading/reloading stiffness 
Reference Pressure (pref) Reference stress of the tri-axial test for the 

specified stiffness parameters 
Ultimate Dilatancy Angle (ψ) Ultimate dilatancy angle 
Friction Angle at Shear (ϕ) Internal friction angle at shear failure  
Power of Stress Level Dependency 
(m) 

Power of stress level dependency  

Porosity (n) Porosity 
KNC (KNC>0) K0 ratio for normally consolidated soil 
Poisson's Ration (ν) Poisson ratio for unloading-reloading 
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3.10.3  Non-Linear Elasticity 

The Modified Mohr-Coulomb model assumes power-law elastic volumetric stress-strain 
relation. That means that the elastic bulk modulus is defined as a power function of the 
hydrostatic pressure p : 

m

ref

t
reft p

ppKK
−










 +
=

1

     (3.10.2) 

where 

Kref : Reference compression modulus 

pref : Reference pressure from user input 

m : power of stress level dependency from user input 

pt : Pressure shift for over-consolidation 

Eq (3.10.2) leads to the following volumetric stress-strain relationship. 

v
e

ref

m

ref

t dKdp
p

pp
ε=









 +
−1

    (3.10.3) 

Integration equation (3.10.3) results in 

)())((
1

1
0

e
V

me
Vref

m
ref

m
tt FKmppppp εε ∆=∆−++−= −  (3.10.4) 

The reference compression modulus is defined as: 

)*63/()
)*21

*3( ν−
+

= m
refref KNC

KNCEurK     (3.10.5) 

 
and pt is the pressure-shift which is defined as:  
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φtan
Cpt =       (3.10.6) 

 

3.10.4  Failure Criterion 

The Modified Mohr-Coulomb model comprises 2 yield-surfaces which each have their 
own hardening function. A Mohr-Coulomb-like yield-surface f1 with parabolic hardening 
function of the friction angle, starting from the user-defined initial internal friction angle ϕ0 
to the user-defined internal friction angle at shear failure ϕ, is defined for shear-failure. 
For compaction a cap-yield surface f2 is defined with an exponential hardening function. 
Both yield-surfaces are defined in terms of p, q and the lode-angle θ. 
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Figure 3.10.1 Projection of modified Mohr-Coulomb yield surface on two planes 
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in which the cap-shape factor  

φ

α

tan

)1(
)21(

9
2

Cp

KNC
KNC

=∆

−
+

=

     (3.10.8) 

being the pressure shift. In midasGTS the parameter R1(θ) is defined as follows: 

nR )
1

3sin1()(
1

1
1 β

θβ
θ

−
−

=     (3.10.6) 

with n=-0.229 and the parameter β1 defined as 
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φ
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β      (3.10.7) 

where the parameter β1 is maximized to 0.7925. 

In midas GTS the parameter R2(θ) = 1. 

 

3.10.5  Flow Rule 

The direction of the plastic strain rate is determined by the plastic potential surfaces, 
where in case of the Modified Mohr-Coulomb model the following two surfaces are 
applied 

222
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cpqppq
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α

ψ
ψ

    (3.10.9) 
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which implies an associative behavior in the p-q space and a non-associated flow in the 
deviatoric space. The dilatancy angle ψ is related to the friction angle ϕ by the 
assumption of Rowe's stress dilatancy theory, which reads 

cv

cv
φφ
φφψ

sinsin1
sinsinsin

−
−

=      (3.10.10) 

in which sinϕcv a constant value which can be conceived as the friction angle at constant 
volume.  
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4.1 Permeability Coefficient Function  
 
Ground water in a fluid state is entangled as a net, which flows through continuous inter-
connected flow channels.  As the water content decreases, the effect of a decrease in the 
size and number of water channels appears, resulting in a decrease in the total amount of 
water flow within the soil.  In an extreme condition of dry soil, the permeability of water 
through the flow channels disappears, whereas the permeability reaches the maximum in 
saturated soil since all the flow channels become effective. 
 
The amount of seepage flow can be determined by the permeability coefficient using the 
Darcy’s law.  However, the permeability coefficient for seepage flow in unsaturated soil 
depends on the water content.  The permeability coefficient reaches the maximum when 
the soil becomes saturated and tends to rapidly decrease with the decrease in water 
content.  The water content is a function of pore water pressure, and the permeability 
coefficient is a function of water content.  Hence the permeability coefficient becomes a 
function of pore water pressure.  Figure 4.1.1 shows a classical relationship between the 
permeability coefficient and pore water pressure. 
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Figure 4.1.1 Permeability coefficient function 
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4.2 Volumetric Water Content Function 
 
When water flows through the soil, a certain amount of water is retained in the ground 
structure.  The amount of the water is governed by the capillary absorption force of the soil 
and the property of the ground structure.  In seepage analysis, this water content is better 
expressed as the volumetric water content, which is a ratio of the volume of water to the 
total volume.  
 
 wV VΘ =               (4.2.1) 

 
where, 
 Θ   : Volumetric water content  

 wV   : Volume of water  

 V   : Total Volume  
 
The relationship curve between the volumetric water content and the pore water pressure is 
known as the water content characteristic curve as shown in Figure 4.2.1.  The slope of the 

curve, wm , represents the rate of change in the amount of water retained in the soil with the 

change in pore water pressure. 
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Figure 4.2.1 Water content characteristic curve 
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( )
( )1

s r
w r mnhα

Θ −Θ
Θ = Θ +

 + 
     (4.2.2) 

 
Where,  

 wΘ  : Unsaturated volumetric water content 

 sΘ  : Saturated volumetric water content 

 rΘ  : Residual volumetric water content 

 α , n , m : Curve shape factors (α =1/unit length, 1 1 /m n= − ) 

 h  : Negative (-) pore water pressure head 
 
When the soil is 100% fully saturated, the volumetric water content becomes the same as 
the porosity, and it can be represented as the ratio of the volume of pores to the total 
volume. 
 
In the case of fully saturated soil with the pore water pressure close to zero under constant 
external force, if the pore water pressure increases and becomes positive, the effective 
stress decreases, and the volume of soil increases.  As a result, the water content in the 
soil increases.  On the other hand, if the pore water pressure decreases to a negative 
value, the water content decreases due to the drainage of water.  Ultimately, even if the 
pore water pressure further decreases after the water is completely drained from the soil, no 
further change in water content takes place. 
 

The slope ( wm ) of the water content characteristic curve represents the variation of water 

content in soil with the change in pore water pressure head.  
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4.3 Consecutive Function 
 
Both the 4.1 permeability coefficient function and 4.2 volumetric water content function were 
defined using the pressure head function alone.  However in reality, both the volumetric 
water content and the permeability coefficient are influenced by the change in water 
pressure head in the soil of nonlinear behavior.  Therefore, SoilWorks provides a 
consecutive function that considers the permeability coefficient based on the water content 
by defining a function of “pressure head-water content-permeability coefficient” and 
obtaining the change in water content relative to the pressure head.  Likewise, SoilWorks 
provides the function of “pressure head-degree of saturation-permeability coefficient” using 
the relation of the water content and the degree of saturation. 
 

   

(a) Pressure head-water content 
-permeability coefficient ratio 

(b) Pressure head-degree of saturation 
-permeability coefficient ratio 

 
Figure 4.3.1 Consecutive function 
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Appendix 
 

A. Output of Safety Ratio 
 
As a convenient post-processing feature, SoilWorks produces the safety factor that enables 
the user to check the safety of a model.  This function does not affect other analysis results.  
This function can be used only with Tunnel Module and is available for all the material 
models. 
 
The safety factor is defined as the ratio of the current stress state to the stress at failure.  
The Mohr-Coulomb failure criterion is used, which is most commonly used for brittle 
materials such as soils.  As shown in Figure A.1, failure is assumed to occur when a Mohr 
circle A, which represents the stress at a point in soil, meets the straight line B defined by 
the Coulomb’s friction law. 
 

A

B

σ−

τ

O

D

R

c
tanφ−  

Figure A.1 Mohr-Coulomb failure criterion 

 
The expression of safety factor based on the Mohr-Coulomb’s failure criterion is as follows: 
 

Df
R

=         (A.1) 

 
where,  
 R  : Radius of Mohr circle 
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 D  : Distance from the center of Mohr circle to Line B 
 

If the state of stresses is{ }, , ,
T

xx yy zz xzσ σ σ τ with the model being on the X-Z plane, zz xxσ σ>  

and the direction of gravity in –Z axis, the Mohr circle is drawn as follows: 
 

σ−

τ

( )0 0,O σ τ

( ),zz xzσ τ

( ),xx xzσ τ−

 
Figure A.2.Mohr circle representing stresses  

 
 
Using Figure A.2, the radius, R  and the center distance, D  of the Mohr circle illustrated 
in Figure A.1 can be calculated as follows: 
 

( )1 2
0 2

σ σ
σ

+
=       (A.2) 

( )2 2
1 0R σ σ τ= − +       (A.3) 

( )
0 0

22

tan

tan

c
D

c

τ σ φ

φ

− +
=

+
     (A.4) 

 
where,  

 0σ  : Stress at the center of Mohr circle 

 1σ  : Maximum principal stress 

 2σ   : Minimum principal stress 

 c   : Cohesion used for safety factor calculation 

 φ  : Friction angle used for safety factor calculation 
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As an exception to the above, if the maximum/minimum principal stresses are at the 
hydrostatic line, the Mohr circle becomes a point, and consequently the safety factor cannot 
be computed in which case the safety factor of -1 is assigned.  If the center of the Mohr 
circle is located beyond the tension zone, the safety factor of -2 is assigned. 
  
 
B. Output of Plastic State 
 
This function displays the plastic state more intuitively.  Since the failure criteria are 
different from material to material, elastic state and plastic state are separately displayed as 
shown in the table below.  In addition, as the status of the progress of stress depends on 
the state of loading or unloading, the stress at the integration point is displayed with the 
distinction of loading, unloading or tension failure. 
 
Duncan-Chang 

State State Variable Post Symbol 

Elastic 11  

Failure 12  

Unloading or reloading 13  

Tension 14  

 
 
Mohr-Coulomb 

State State Variable Post Symbol 

Elastic 31  

Plastic 32  

Unloading or reloading 33  

Tension failure 34  
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Drucker-Prager 

State State Variable Post Symbol 

Elastic 41  

Plastic 42  

Unloading or reloading 43  

Tension failure 44  

 
 
Modified Cam-Clay 

State State Variable Post Symbol 

Elastic 61  

Plastic 62  

Unloading or reloading 63  

 
 
Hoek-Brown 

State State Variable Post Symbol 

Elastic 71  

Plastic 72  

Unloading or reloading 73  

 
 
Von Mises 

State State Variable Post Symbol 

Elastic 81  

Plastic 82  

Unloading or reloading 83  
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Tresca 
State State Variable Post Symbol 

Elastic 91  

Plastic 92  

Unloading or reloading 93  
 
 
Sekiguchi-Ohta 

State State Variable Post Symbol 

Elastic 101  

Plastic 102  

Unloading or reloading 103  

Tension failure 104  
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