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Dynamic loads can develop in the ground and underground structures due to earthquakes, 

machinery motions, pile driving, explosions, etc.  The effects and characteristics of these 

loads on the ground or underground structures are as follows:  

 

 Earthquake: An earthquake has the greatest influence on the ground and 

underground structures compared to any other dynamic loads. An earthquake 

causes settlements of structures’ foundations, vertical mis-alignment of 

structures and liquefaction that leads to inability to support structures or even 

floatation of some light structures.  An earthquake generates random motions in 

any direction, and it is almost impossible to predict when and where an 

earthquake may occur.  

 Machinery motions: Dynamic loads due to machinery are generated by 

reciprocation or rotation of machines, which are characterized by harmonic loads 

defined as sine waves.  

 Pile driving or explosions: These dynamic loads are normally generated during 

construction and are referred to as impact loads, which generate significant 

energy for a short period.  Like seismic loads, impact loads are not periodic. 

 

 

 

 

Figure A.1 Damage from earthquakes   
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Ground response analysis is performed in order to generate the design response spectrum, 

to establish the dynamic stress-strain relationship of the ground and to calculate the seismic 

loads acting on the ground structures due to an earthquake.  The characteristic of the 

seismic wave at a bedrock outcrop is almost similar to that at bedrock.  However, the 

characteristic of a seismic wave in soft soil or at the ground surface of deep ground can 

widely vary depending upon the soil properties.  The dynamic behavior of a structure 

founded on soft soil can be greatly affected by soil-structure interaction.  If a structure is 

founded on rock whose shear strain is less than 610−  with the velocity of shear wave 

greater than 1,100m/sec, the soil-structure interaction can be ignored. 

 

Soil-structure interaction can be summarized to have largely two effects.  The first one is 

the change in dynamic characteristics of the structure.  Because the stiffness of soil is 

normally smaller than that of the structure, the stiffness and the natural frequency of the 

structure become smaller.  The second one pertains to increasing the damping of the 

structural system due to the addition of radiation damping.  These effects vary depending 

on the composition of soil layers, material properties, specified seismic data and the 

frequency of the structure.  Therefore, the response due to soil-structure interaction 

analysis can be larger or smaller than the general seismic analysis results with the 

assumption of fixity at the ground. 

 

Soil-structure interaction due to an earthquake excitation can be broadly divided into 

kinematic interaction and inertial interaction.  In an earthquake, the phenomenon that the 

behavior of ground in which a massless structure is situated is different from the behavior of 

the ground without the presence of the structure is known as kinematic interaction.  Since 

an incident wave with a high order frequency component retains a short wavelength, the 

stiffness of the foundation absorbs and reflects the wave.  But an incident wave with a low 

order frequency component retains a long wavelength, which passes through the structure 

and generates motion in the structure.  In case of a vertically incident shear wave, rocking 

motion is generated in the structure. The ground motion generated by kinematic interaction 

is also referred to as scattering motion. Kinematic interaction is generally affected by the 

type of incident wave and the shape of foundation.  If the structure is on the ground surface, 

the foundation is embedded in the ground at a shallow depth, or the surface wave is not 

considered, the effect of kinematic interaction is not so significant that it may be ignored in 

seismic analysis.  When the structure is excited by a seismic wave, the inertia force is 

generated by the structure’s mass.  The inertia force in turn generates the kinematic 

energy of the structure, which is then radiated to the far field soil resulting in radiation 

motion of the ground.  Inertial interaction increases as the stiffness difference between the 
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 Dynamic analysis 

structure and the nearby ground increases.  Therefore, when a very stiff structure is 

situated in soft soils, the influence of inertia interaction is much greater. 

 

Soil-structure interaction analysis methods are largely classified into ‘substructure method’ 

and ‘direct method’.  The substructure method undergoes a series of analyses by steps 

whose results are compiled in order to obtain the final response. 

 

 Step1: From the controlled motion in the free field, determine the input motion 

at the soil-structure interface considering the soil properties and the effect of 

foundations.  

 Step2: Define the dynamic stiffness of the semi-infinite ground at the soil-

structure interface. 

 Step3: Model a soil-structure system by combining the dynamic soil stiffness 

calculated from Step2 with the structure, and calculate the structural response 

by applying the excitation of the input motion obtained from Step1.  

 

Even though it is difficult to fully consider the nonlinear properties of soil, a most appropriate 

analytical method can be chosen for each step.  It is also possible to evaluate results at 

each step, which allows evaluating the sensitivity.  Analysis by this method is more 

economical than by the direct method. 

  

The direct method uses the finite element method or finite difference method to model the 

structure and the nearby ground of a certain limit together to analyze the soil-structure 

interaction at a time.  The direct method takes much longer analysis time than the 

substructure method, but it has the advantage of being able to consider nonlinear 

compatibility condition at the soil-structure interface, the nonlinearity of soil, etc.  The direct 

method in SoilWorks supports time history analysis and equivalent linear analysis. 
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Figure A.2 Dynamic analysis model of abutment and ground using finite elements subjected to seismic loading 
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Eigenvalue analysis is used to analyze the dynamic characteristics of soil or underground 

structures, which is in turn used to predict the characteristics or the trend of dynamic 

responses of the soil or underground structures.  Using the orthogonality relationship of 

separating the modes, mode superposition and response spectrum can be used to easily 

predict the dynamic responses of soil or underground structures.  Such reasons lead to a 

wide use of eigenvalue analysis in dynamic analysis.  

 

SoilWorks provides ‘Subspace iteration method’ and ‘Lanczos method’ for eigenvalue 

analysis.  Chapter 1.2 and 1.3 further describes the two methods in detail. 

 

 

1.1 Eigenvector Analysis  
 

In SoilWorks, mode shapes and natural periods of an undamped free vibration are obtained 

from the characteristic equation below. 

 

 n n nλΦ = ΦK M       (1.1.1) 

 

where,  

K   : Stiffness matrix of ground or underground structure 

 M  : Mass matrix of ground or underground structure 

 nλ  : n-th mode eigenvalue 

nΦ  : n-th mode shape (mode vector) 
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 (a) Mode shapes 

 

sec secsec

1 1.87510407λ =

1 1.78702 secT =
2 4.69409113λ =

2 0.28515 secT =
3 7.85475744λ =

3 0.10184 secT =
 

 

          (b) Natural periods 

 

          Figure 1.1.1 Mode shapes and corresponding natural periods of a prismatic cantilever beam 

 

 

Eigenvalue analysis is also referred to as “free vibration analysis”, which is used to analyze 

the dynamic characteristics of ground or underground structures.  

 

The dynamic characteristics obtained by an eigenvalue analysis for ground or an 

underground structure include vibration modes (mode shapes), natural periods of vibration 
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(natural frequencies) and modal participation factors.  They are determined by the mass 

and stiffness of ground or an underground structure.  

 

Vibration modes take the form of natural shapes in which a structure or ground freely 

vibrates or deforms.  The first mode shape (or fundamental vibration shape) refers to a 

deformed shape by the least energy or force.  The shapes formed with increase in energy 

define the subsequent higher modes.  Figure (1.1.1) shows the vibration modes of a 

cantilever beam, arranged in the order of increasing energy requirements for the respective 

deflected shapes, starting from the shape formed by the least energy. 

 

A natural period of vibration refers to the time required to complete one full cycle of the free 

vibration motion in the corresponding natural mode.  

 

The method of calculating the natural periods in a single degree of freedom system (SDOF) 

assumes that the loading and damping terms are equal to zero.  The equation of motion in 

SDOF yields a free vibration equation of a linear second order differential equation as given 

in Eq. (1.1.2).  

 

 
( )

0
mu cu ku p t
mu ku

+ + =
+ =

 


      (1.1.2) 

 

Since u is the displacement due to vibration, and if cosu A tω= is assumed, where, A  is a 

constant related to the initial displacement, then Eq. (1.1.2) can be written as, 

 

 
2( ) cos 0m k A tω ω− + =              (1.1.3) 

 

In order to satisfy Eq. 1.1.3, the value in the parenthesis to the left must be zero, which 

leads to Eq. (1.1.4) 

 

 
2 1, , ,

2
k k f T
m m f

ωω λ ω
π

= = = = =           (1.1.4) 

 

where,  

2ω  : Eigenvalue 

ω  : Rotational natural frequency 
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f  : Natural frequency 

T  : Natural period 

 

The modal participation factor is expressed as a ratio of contribution by the corresponding 

mode to the contribution by the total modes and is written as, 

 

 2
i im

m
i im

M

M

ϕ
τ

ϕ
= ∑
∑

                   (1.1.5) 

 

where,  

mτ   : Modal participation factor, 

m   : Mode number, 

iM  : Mass at location i, 

imϕ   : m-th mode shape at location i 

 

Most seismic design codes stipulate that the sum of the effective modal masses included in 

an analysis should be greater than 90% of the total mass.  This will ensure that most 

critical modes affecting the results are included in the design. 

 

 

2

2
im i

m
im i

M
M

M
ϕ

ϕ

  = ∑
∑

              (1.1.6) 

 

where,  

mM   : Effective modal mass 

 

If certain degrees of freedom of a given mass are constrained, the mass will be included in 

the total mass but excluded from the effective modal mass due to the restraints on the 

corresponding mode vectors.  Accordingly, if the user attempts to evaluate the ratio of the 

effective modal mass to the total mass, the degrees of freedom pertaining to the mass 

components must not be constrained.  

 

In order to accurately analyze the dynamic behavior of ground or an underground structure, 

the analysis must closely reflect the mass and stiffness, which are most important factors 

for determining the eigenvalues.  In most cases, finite element models can closely reflect 
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the stiffness components of structural members.  In the case of mass however, the user is 

required to accurately assess the masses pertaining to the self-weights of structural 

components, which are relatively small compared to the total mass.  Inclusion of masses 

for those materials not included in the analysis model must be accounted for in eigenvalue 

analysis. 

 

Mass components are generally specified by 3 translational masses and 3 rotational mass 

moments of inertia consistent with 6 degrees of freedom per node.  The rotational mass 

components pertaining to the rotational mass moments of inertia do not directly affect the 

dynamic response of a structure because an earthquake is imposed in the form of 

translational ground accelerations in seismic design.  However, when the ground or the 

structure is of an irregular configuration, where the mass center does not coincide with the 

stiffness center, the rotational mass moments of inertia indirectly affect the dynamic 

response by partially changing the mode shapes. 

 

Mass components are calculated by the following equations: (See Table 1.1.1) 

 

Translational mass   :  dm∫    (1.1.7) 

Rotational mass moment of inertia :  
2r dm∫  

 

where,  

r  : distance from the center of the total mass to the center  

of a corresponding infinitesimal mass. 

 

The unit for mass is defined by the weight divided by the acceleration of gravity, Weight 

(Time
2
/Length).  The unit for rotational mass moment of inertia is defined by the mass 

multiplied by the square of a length unit, Weight (Time
2
/Length)×Length

2
.  For example, if 

the MKS or English unit system is used, the mass is determined by the weight divided by 

the acceleration of gravity.  In the case of an SI unit system the mass is determined by 

directly using the weight in the MKS system.  Nevertheless, values used in the MKS 

system must be multiplied by the acceleration of gravity for defining the stiffness or loading 

in the SI unit system. 

 

In SoilWorks, lumped mass is used for efficiency in the analysis process.  Mass data can 

be specified using ‘Loads | Boundaries | Analysis > Static Load > Nodal Mass’ from the 

main menu.  
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         Table 1.1.1 Calculations for Mass data  

 

   ρ  : mass per unit area  : mass center 

Shape Translation mass 
Rotational mass moment 

of inertia 

Rectangular shape 

               

M bdρ=  

3 3

12 12m

bd db
I ρ= +

 
 
 

 

( )2 2

12
M

b d= +  

Triangular shape 

            

M ρ= ×area of 

triangle 
( )m x yI I Iρ= +  

Circular shape 

   

2

4
d

M
π

ρ=
 
 
 

 
4

32m

d
I

π
ρ=
 
 
 

 

General shape 

           

M dAρ= × ∫  ( )m x yI I Iρ= +  
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Line shape 

 

 

 

 

                

Lρ =Mass per unit 

length 

LM Lρ= ×  

3

12m L

L
I ρ=

 
 
 

 

Eccentric mass 

            

Eccentric mass: m 

M = m 

Rotational mass moment 

of 

inertia about its mass 

center: oI  

2
m oI I mr= +  
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1.2 Subspace Iteration Method  
 

The subspace iteration method pertains to iterative calculations of a number ( sN ) of 

vectors ( kX ) constituting the subspace, kE  to converge to natural modes 

1 2 ..
sNφ φ φ   .  The following shows the process of calculating the vectors, kX  

through a k  number of iterations.  

 

- For the first iteration, sN  number of initial vectors, 1X  constituting the subspace, 1E   

- For the k-th iteration,  

- Solution to linear simultaneous equations  k kKY MX=  

- Projection of stiffness matrix   1
T

k k kK Y KY+ =  

- Projection of mass matrix   1
T

k k kM Y MY+ =  

- Solution to projected eigenvalues  1 1 1 1 1k k k k kK Q M Q+ + + + += Λ  

 

* * *
1 1 2 ...

sk Nψ ψ ψ+  =  Q  

*
1

*
2

1

*
s

k

N

λ
λ

λ

+

 
 
 =  
 
  

Λ


 

- Calculation of 1kX +     1 1k k k+ +=X Y Q  

 

The 
*
nλ  and kX  that are computed from the above iterative process will converge to 

eigenvalues and natural modes respectively.  

 

*
1 2, ...

sm m k Nλ λ φ φ φ → →  X     (1.2.1) 

 

When kX  consists of sN  number of vectors, the dimensions of kK  and kM  are fixed 

to s sN N×  irrespective of the number of iterations.  The convergence of the eigenvalues 

( 1)k
mλ

+
 computed from k  iterations will be evaluated by the change in consecutive values 

as follows: 
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( 1) ( )

( 1)

k k
m m

k
m

λ λ ε
λ

+

+

−
≤        (1.2.2) 

 

The subspace method in SoilWorks allows the user to input the dimension of subspace kX , 

sN , the maximum number of iterations, IN , and the convergence tolerance, ε  of Eq. 

(6.1.2).  The dimension of subspace, sN  actually used in calculation is shown below.  

_ 0sN  is the subspace dimension specified by the user, sN , and fN  is the number of 

eigenvalues to be calculated.  

 

_ 0max{ ,min(2 , 8)}s s f fN N N N= +     (1.2.3) 

 

The maximum number of iterations in subspace iterative calculation is set to 20IN = , and 

the convergence tolerance is set to 101.0 10ε −= × .  
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1.3 Lanczos Iteration Method 
 

The Lanczos method is an iterative method of obtaining approximate eigenvalues using the 

tridiagonal matrix, kT  generated through the process of creating the Krylov’s subspace 

1, 2( ,..., )kspan V V V .  In order to efficiently apply the Lanczos method to the eigenvalue 

problem of Eq. (6.1.1) stemming from the vibration analysis of ground or a underground 

structure, mλ  must be substituted with 1/m mλ σ θ= + .  This is referred to as the Shift-

invert technique, and σ  is the expected first eigenvalue.  The Lanczos iteration method 

using the shift-invert technique is summarized as follows:  

 

- For the first iteration, assume the initial block vector 1V   

- For the k-th iteration  

- Multiplication of mass matrix   k k=U MV  

- Solution to linear simultaneous equations  ( ) k kσ− =K M W U  

- Orthogonalization    
*

1 1
T

k k k k− −= −W W V B  

- Calculation of matrix kC   
*

k k k=C V MW  

- Orthogonalization   
** *
k k k k= −W W V C  

- Normalization within block vector   
**

1k k k+=W V B  

 

SoilWorks uses the block vector, mV  to efficiently calculate eigenvalues, which is called 

the block Lanczos method.  The block tridiagonal matrix, kT  generated from the process 

of the above iterative calculation is given as,  

 

1 1

1 2

1 1

1

T

k
T

k k
T
k k

− −

−

 
 
 
 =
 
 
 
 

C B
B C

T
C B
B C



  



      (1.3.1) 

 

Once the eigenvalue problem, 
* * *

k m m mψ θ ψ=T  is solved using kT , 
*
mλ  can be obtained 

using 
* *1/m mλ σ θ= + , and 

*
mλ  is an approximate solution to the original eigenvalue problem 
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of Eq. (1.1.1).  When the block dimension of kV  is set to bN , the dimension of kT  

increases to bN , and 
*
mλ  converges to mλ  as the number of iterations increases.  The 

approximate value, 
*
mφ  of the natural mode, mφ  is obtained from the following equation, 

which converges together with 
*
mλ . 

 

[ ]* *
1 2 3 ...m k mφ ψ= V V V V      (1.3.2) 

 

The convergence of eigenvalues and natural modes calculated by the Lanczos method can 

be examined by the following:  

 

* * *
m m mφ λ φ

ε
−

≤
K M

K
      (1.3.3) 

 

where, .  is 2-norm, and SoilWorks uses 162.22 10ε −= × .   

 

In the Lanczos method in SoilWorks, the range of interest in frequency to be calculated can 

be determined by two frequencies, 1f  and 2f .  The range of interest in frequency can be 

reflected in the calculation by setting the expected eigenvalue to 
2

1(2 )fσ π=  by the shift-

invert technique.  Figure 1.3.1 shows the range and order of eigenvalues calculated by the 

relationship between 1f  and 2f .  If the total number of eigenvalues to be calculated is 

set to fN , the eigenvalues can be calculated depending on the magnitudes of 1f  and 2f  

as follows: 

 

- For 1 2f f=  : calculate fN  frequencies close to 1f  

- For 1 2f f<  : calculate fN  frequencies close to 1f  in the range of 1 2[ , ]f f  

- For 1 2f f>  : calculate fN  frequencies close to 1f  in the range of 2 1[ , ]f f  
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Figure 1.3.1 Direction of searching frequencies  

 

 

The default values for the range of interest in frequency, 1f  and 2f  are 1 20, 1600f f= = .  

 

 

1 2 34 f

1 2f f=

1 2 3 4 f

1f 2f

1234 f

1f2f
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2.1 Introduction 
 

Damping in ground or an underground structure in dynamic analysis can be largely 

classified into the following: 

 

A. Viscous damping (Voigt model and Maxwell model) 

 

B. Hysteretic damping  

 

C. Friction damping  

1) Internal friction damping (Material damping) 

2) External friction damping 

3) Sliding friction damping 

 

D. Radiation damping 

 

E. Modal damping 

1) Proportional damping 

 Mass proportional type 

 Stiffness proportional type 

 Rayleigh type 

 Caughey type 

 

2) Non-proportional damping 

 Energy proportional type  

 

Among the many different ways of expressing damping above, modal damping is most 

frequently used in the numerical analysis of structures.  

 

Modal damping is determined for each modal natural frequency of a vibration system.  The 

modal damping can be classified into proportional and non-proportional damping.  

SoilWorks provides proportional damping, which includes mass proportional, stiffness 

proportional and Rayleigh type damping.  
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2.2 Proportional Damping  

 
The mass-proportional damping represents external viscous damping such as caused by air 

resistance, which is based on the assumption that damping matrix is proportional to mass.  

The stiffness-proportional damping on the other hand may overestimate the damping of 

high order modes since it is assumed that damping is proportional to stiffness due to the 

difficulty in directly considering the radiation damping (vibration energy release into the 

ground of infinite nature).  

 

Rayleigh damping is a type of stiffness-proportional damping with the modification of the 

damping coefficients for high order modes, which can be expressed by combining the mass 

and stiffness types of proportional damping. 

 

The general type of proportional damping matrix C is defined by Caughey as follows: 

 

 
N 1

1 j
j

j 0
C M{ a ( M K ) }

−
−

=

= ∑              (2.2.1) 

 

where, 

 ,j N  : Degrees of freedom of nodes (Mode number) 

 

In Eq. (2.2.1), 1M K−  can be obtained from the equation of free vibration of an undamped 

system as below. Asssuiming, 

 

 M{ y } K{ y } 0+ =               (2.2.2) 

 

 iax{ y } { u }e=               (2.2.3) 

 

Substituting into Eq. (2.2.1), the following is obtained: 

 

 2( M K ){ u } {0 }ω− + =              (2.2.4) 

 

From Eq. (2.2.4), 1 2M K ω− = is obtained.  Here, 2ω exists in as many numbers as the 

number of modes.  Considering all the modes, it is expressed as
2

sω . 
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Substituting 1M K− obtained from Eq. (2.2.2) - (2.2.3) into Eq. (2.2.1), and multiplying 

T
s{ u } on the left hand side of and s{ u } on the right hand side, Eq. (2.2.5) derived. 

 

 
N 1 N 1

T 2 j T 2 j
s s s j s s s j s s

j 0 j 0
{ u } C{ u } C a { u } M{ u } a Mω ω

− −

= =

= = ⋅ ⋅ = ⋅ ⋅∑ ∑         (2.2.5) 

 

Also, the damping coefficient for Mode s, s h  can be expressed as, 

 

 s s s sC 2 h Mω= ⋅ ⋅               (2.2.6) 

 

The damping coefficient, s h  in Eq. (2.2.5) and (2.2.6) is, 

 

 

      

2 js
s j s

s s s

3 2 N 30
1 s 2 s N 1

s

C 1h a
2 M 2
1 a( a a a ), s 1 N
2

ω
ω ω

ω ω ω
ω

−
−

= = ⋅
⋅

= + ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ = −

∑
          (2.2.7) 

 

The damping coefficients for N number of natural modes are then individually determined.  

 

The damping coefficients and matrices for the mass proportional type and stiffness 

proportional type are as follows:  

 

     0
s 0

s

ah , C a M
2 ω

= =   : Mass proportional type            (2.2.8) 

 

     1 s
s 1

ah , C a M
2
ω⋅

= =  : Stiffness proportional type           (2.2.9) 

 

In the case of the Rayleigh type, the above becomes, 

 

     0
s 1 s 0 1

s

1 ah ( a ), C a M a K
2

ω
ω

= + ⋅ = +             (2.2.10) 
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where,  

1 2 1 2 2 1
0 2 2

2 1

2 ( h h )a
( )

ω ω ω ω
ω ω

⋅ ⋅ ⋅ − ⋅
=

−
 

   
2 2 1 1

1 2 2
2 1

2( h h )a
( )

ω ω
ω ω
⋅ − ⋅

=
−
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The dynamic equilibrium equation for ground or an underground structure subjected to 

seismic loading used in response spectrum analysis can be expressed as follows: 

 

 [ ] [ ] [ ] [ ]( ) ( ) ( ) ( )gM u t C u t K u t M w t+ + = −              (3.1) 

 

where, 

 [ ]M    : Mass matrix, 

 [ ]C  : Damping matrix, 

 [ ]K  : Stiffness matrix, 

 gw    : Ground acceleration 

 

and, u(t), ( )u t , ( )u t are relative displacement, velocity and acceleration respectively. 

 

Response spectrum analysis assumes the response of a multi-degree-of-freedom (MDOF) 

system as a compound of single-degree-of-freedom (SDOF) systems.  A response 

spectrum defines the peak values of responses (acceleration, velocity & displacement) 

corresponding to and varying with natural periods (or frequencies) of vibration, which have 

been obtained through a numerical integration process.  Response spectrum analysis is 

generally carried out for seismic design using the design spectra defined in design 

standards. 

 

In order to predict the peak design response values, the maximum response for each mode 

is obtained first, and then the maximum responses of the modes are combined by an 

appropriate method.  For seismic analysis, the displacement and inertial force 

corresponding to a particular degree of freedom for the m-th mode are expressed as follows: 

 

 xm m xm dmd Sϕ= Γ , xm m xm am xF S Wϕ= Γ             (3.2) 

 

where,  

Γm  : m-th Modal participation factor 
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ϕ m  : m-th Modal vector at location x 

Sdm  : Normalized spectral displacement for m-th mode period 

Sam  : Normalized spectral acceleration for m-th mode period 

Wx   : Mass at location x 

 

Linear interpolation is used in SoilWorks to find the spectral value corresponding to the 

calculated natural period for a given mode from the spectral data defined for a range of 

certain periods.  It is therefore recommended that spectral data be provided at close 

increments of natural periods at the locations of significant changes in the spectrum 

curvature (refer to Figure 3.1).  The range of natural periods for spectral data must be 

sufficiently extended to include the maximum and minimum natural periods obtained from 

the eigenvalue analysis. 

 

SoilWorks can easily generate the spectral data for seismic design by specifying Dynamic 

coefficient, Foundation factor, Zoning factor, Importance factor, Ductility factor (or Response 

modification factor or Seismic response factor), etc.  

 

SoilWorks permits response spectrum analysis in any direction on the Global X-Z plane and 

in the Global Z direction.  The user may choose an appropriate method of modal 

combination for analysis results such as the Complete Quadratic Combination (CQC) 

method or the Square Root of the Sum of the Squares (SRSS) method.
1

 

 

The following describes the methods for modal combinations: 

 

 SRSS (Square Root of the Sum of the Squares) 

 

  
1 22 2 2

max 1 2 nR R R R = + + ⋅ ⋅ ⋅ +                     (3.3) 

 

 ABS (ABsolute Sum) 

 

  max 1 2 nR R R R= + + ⋅ ⋅ ⋅ +             (3.4) 

 

                                                             
1
 The user may reinstate the signs lost during the modal combination process and apply them to the 

response spectrum analysis results. For details, refer to “Analysis and Design > Analysis Control > Dynamic Module > 

Respnse Spectrum Analysisl” in the Online Manual. 
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 CQC (Complete Quadratic Combination) 

 

  

1 2

max
1 1

N N

i ij j
i j

R R Rρ
= =

 
=  
 
∑∑             (3.5) 

 

where,  

2 3 2

2 2 2

8 (1 )
(1 ) 4 (1 )ij

r r
r r r
ξρ

ξ
+

=
− + +

, 

   
j

i

r
ω
ω

= , 

   maxR    : Peak response, 

   iR    : Peak response of i-th mode, 

   r  : Ratio of natural frequency of j-th mode to i-th mode, 

   ξ    : Damping ratio 

 

When i = j in Eq. (3.5), then 1ijρ =  regardless of the damping ratio. If the damping ratio (ξ) 

becomes zero (0), both CQC and SRSS methods produce the same results. 

 

The ABS method produces the largest combination values among the three methods.  The 

SRSS method has been widely used in the past, but it tends to overestimate or 

underestimate the combination results in the cases where the values of natural frequencies 

are close to one another.  As a result, the use of the CQC method is increasing recently as 

it accounts for probabilistic inter-relations between the modes.  

 

For example, if the frequencies and displacements of individual modes are calculated as 

below for ground or an underground structure having 3 DOF with a damping ratio of 0.05, 

the results from the applications of SRSS and CQC are compared as follows: 

 

 Natural frequencies  

 

  1 0.46ω = , 2 0.52ω = , 3 1.42ω =  

 

 Maximum modal displacements: Dij (displacement components of i-th 

degree of freedom for j-th mode)  
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0.036 0.012 0.019
0.012 0.014 0.005

0.049 0.002 0.017
ijD = − −

−
 

 

 If SRSS is used to compute the modal combination for each degree of freedom, 

  

  { }
1 22 2 2

max 1 2 3 0.042 0.046 0.052R R R R = + + =   

 

 If CQC is used,  

 

  12 21 0.3985ρ ρ= =  

  13 31 0.0061ρ ρ= =  

  23 32 0.0080ρ ρ= =  

  
{ }

1 22 2 2
max 1 2 3 12 1 2 13 1 3 23 2 32 2 2

0.046 0.041 0.053

R R R R R R R R R Rρ ρ ρ = + + + + + 
=

 

 

Comparing the two sets of displacements for each degree of freedom, we note that the 

SRSS method underestimates the magnitude for the first degree of freedom, but 

overestimates the value for the second degree of freedom relative to those obtained by 

CQC.  Thus, the SRSS method should be used with care when natural frequencies are 

close to one another. 
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         Figure 3.1 Response spectrum curve and linear interpolation of spectral data 

 

 



 

 

Time History Analysis 
 

Chapter 4 

SoilWorks 

 
26 

 

 

4.1 Introduction 
 

The dynamic equilibrium equation for time history analysis is written as: 

 

 [ ] ( ) [ ] ( ) [ ] ( ) ( )M u t C u t K u t p t+ + =              (4.1.1) 

 

where,  

[ ]M    : Mass matrix 

 [ ]C  : Damping matrix 

 [ ]K  : Stiffness matrix 

 ( )p t  : Dynamic load 

 

and, ( )u t , ( )u t  and ( )u t are displacement, velocity and acceleration respectively. 

 

Time history analysis seeks out a solution to the dynamic equilibrium equation when ground 

or an underground structure is subjected to dynamic loading.  It calculates a series of 

ground and structural responses (displacements, member forces, etc.) within a given period 

of time based on the dynamic characteristics of the ground and structure under the applied 

loading.  SoilWorks uses the modal superposition method and the direct integration 

method for time history analysis. 

 

The following outlines the general concept of the modal superposition method and 

precautions when entering the data:  
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4.2 Modal Superposition Method 

 
Modal superposition finds the displacements of ground or an underground structure in the 

form of a linear combination of displacement shapes having the orthogonality to one another.  

This method is used on the assumption that the damping matrix can be composed of a 

linear combination of the mass and stiffness matrices as presented below. 

 

 [ ] [ ] [ ]C M Kα β= +               (4.2.1) 

 

 ( ) ( ) ( ) ( )T T T TM q t C q t K q t F tΦ Φ Φ Φ Φ Φ Φ+ + =             (4.2.2) 

 

 ( ) ( ) ( ) ( )i i i i i i im q t c q t k q t P t+ + =   ( 1,2,3, , )i m= ⋅ ⋅ ⋅            (4.2.3) 

 

 ( ) ( )
m

i i
i j

u t q t
=

= Φ∑               (4.2.4) 

 
( )

0

(0) (0)( ) (0)cos sin

1 ( ) sin ( )

i i

i i

t i i i i
i i Di Di

Di

t t
i Di

i Di

q qq t e q t t

P e t d
m

ξ ω

ξ ω τ

ξ ωω ω
ω

τ ω τ τ
ω

−

− −

 +
= + 

 

+ −∫
           (4.2.5) 

 

where,  

21Di i iω ω ξ= − , 

 ,  α β    :  Rayleigh coefficients, 

 iξ  :  Damping ratio for i-th mode, 

 iω    :  Natural frequency of i-th mode, 

 iΦ  :  i-th Mode shape, 

 ( )iq t    :  Solution to SDF equation by i-th mode 

 

In time history analysis, the displacements of ground or an underground structure are 

determined by summing up the product of each mode shape and the solution to the 

corresponding modal equation of the SDF system as expressed in Eq. (4.2.5). Its accuracy 

depends on the number of modes used. 
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The modal superposition method is very effective, which is most widely used in linear 

dynamic analyses for large ground or underground structures.  However, this method 

cannot be applied to nonlinear dynamic analysis or to the cases in which the damping 

matrix cannot be assumed as a linear combination of the mass and stiffness matrices due 

to the presence of damping devices. 

  

The following outlines some precautions required during data entry when using the modal 

superposition method: 

 

 Total analysis time (or number of iterations) 

 

 Analysis time interval: The time interval used in analysis can greatly affect the 

accuracy of analysis results. The magnitude of the time interval must be selected 

to closely reflect the periods of higher modes of the ground or underground 

structure and the period of the applied loading. The analysis time interval directly 

influences the integral term in Eq. (4.2.4), and as such specifying an improper 

time interval may lead to inaccurate results. In general, one-tenth of the highest 

modal period under consideration is a reasonable value for the time interval. In 

addition, the time interval should be smaller than that of the applied loading. 

 

  
10

pT
t∆ =       (4.2.6) 

 

where,  

pT    : The highest modal period being considered  

 

 Modal damping ratios (or Rayleigh coefficients): Values for determining the 

energy dissipation (damping) properties of ground or an underground structure 

(damping ratio of the total ground or the underground structure or for each mode) 

 

 Dynamic loads: Dynamic loads are directly applied to the nodes of ground or an 

underground structure or foundations, which are expressed as a function of time. 

The forcing function must sufficiently represent the change in total loadings. 

Loading at an undefined time is linearly interpolated. 
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4.3 Direct Integration Method 

 
The direct integration method solves the dynamic equilibrium equation by gradually 

integrating it over time steps.  Integration takes place at every time step without changing 

the form of the equilibrium equation. Various methods can be used to obtain the solution. 

 

SoilWorks uses the Newmark method for direct integration, which shows good convergence.  

The following are the basic assumptions and integration process: 

 

 Δ[( ) ]t t t t t tu u 1 u u t+∆ += + − δ + δ ∆                (4.3.1) 

 

 
ΔΔ [( ) ]Δ

1

2
t t t t t t t 2u u u t u u t+∆ += + + − α + α              (4.3.2) 

 

t t u+∆   is determined from Eq. (4.3.2), which is then substituted into Eq. (4.3.1) to calculate 

t tu+∆  .  Thus, the expressions like Eq. (4.3.3) can be written in terms of displacement, 

velocity and acceleration at the previous step and displacement at the current. 

 

 
Δ

t t t t t t t

t t t t t t t

u f ( u , u , u , u )

u f ( u , u , u , u )

+∆ +∆

+ +∆

=

=

  

  
            (4.3.3) 

 

By substituting the values of Eq. (4.3.4) into the dynamic equilibrium equation like Eq. 

(4.3.5), the equation can be defined in terms of displacement, velocity and acceleration at 

the previous step and displacement at the current step.  The displacement at the current 

step can be obtained from Eq. (4.3.6). Using the displacement at the current step and the 

values from the previous step, acceleration and velocity at the current step can be found as 

shown in Eq. (4.3.7).  Damping is calculated using the ratios of the stiffness and mass as 

shown in Eq. (4.3.8).  

 

 [ ] [ ] [ ]t t t t t t t tM u C u K u p+∆ +∆ +∆ +∆+ + =              (4.3.4) 
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[ ][ ] [ ] [ ] [ ]( )

                                                   [ ]( )

t t t t t t t

0 1 0 2 3

t t t

1 4 5

K a M a C u p M a u a u a u

C a u a u a u

+∆ +∆+ + = + + +

+ + +

 

 
        (4.3.5) 

 

 [ ] t t t tˆ ˆK u p+∆ +∆=                (4.3.6) 

 

 [ ] [ ] [ ] [ ]0 1K̂ K a M a C= + +  

 [ ]( ) [ ]( )t t t t t t t t t t

0 2 3 1 4 5p̂ p M a u a u a u C a u a u a u+∆ +∆= + + + + + +     

 ( )t t t t t t t

0 2 3u a u u a u a u+∆ +∆= − − −   ,   
t t t t t t

6 7u u a u a u+∆ +∆= + +         (4.3.7) 

 

where,  

20 1 2 3

1 1 1
1

t t t 2
a a a a, , ,δ

−
α∆ α∆ α∆ α

= = = =  

 ( ) ( ),4 5 6 7

t
1, 2 t 1 t

2
a a a a,δ ∆ δ

− − ∆ − δ δ∆
α α

= = = =  

a, δ  : Newmark integration variables (Stable if 0.5, 0.25α = δ = ) 

 t∆   : Integration time step 

 

 [ ]C = [ ] [ ]a K b M+               (4.3.8) 

 

where,  

a, b   : Proportional constants for stiffness and mass for calculation of damping 

 

The direct integration method should be used in most cases involving nonlinearity of 

stiffness and damping.  Because direct integration is performed at all the time steps, the 

analysis time becomes proportional to the total number of time steps.  The following 

outlines some precautions required during data entry when using the direct integration 

method: 

 

 Total analysis time (or number of iterations) 
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 Time step: The time interval used in analysis can greatly affect the accuracy of 

analysis results.  The magnitude of the time interval must be selected to closely 

reflect the periods of higher modes of the ground or underground structure and 

the period of the applied loading.  The analysis time interval directly influences 

the integral term in Eq. (4.3.7), and as such specifying an improper time interval 

may lead to inaccurate results. In general, one-tenth of the highest modal period 

under consideration is a reasonable value for the time interval.  In addition, the 

time interval should be smaller than that of the applied loading. 

 

  
10

pT
t∆ =               (4.3.9) 

 

where,  

pT    : The highest modal period being considered  

 

 The time interval must not be unnecessarily set to a small number since the 

analysis time increases in proportion to the number of time steps. 

 

 Definition of damping using stiffness and mass: Damping is defined in 

proportion to stiffness and mass. 

 

 Time integration method: Integration parameters necessary for using the 

Newmark method are entered.  While a constant acceleration calculates a 

stable and converged solution in every condition, a linear acceleration may lead 

to divergence depending on the condition.  Whenever possible, it is more 

appropriate to use the integration parameters corresponding to a constant 

acceleration. 

 

 Dynamic loads: Dynamic loads are directly applied to the nodes of ground or an 

underground structure or foundations, which are expressed as a function of time.  

The forcing function must sufficiently represent the change in total loadings. 

Loading at an undefined time is linearly interpolated. 

 

The following describes the fundamentals of dynamic analysis of ground or an underground 

structure:   
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Figure (4.3.1) idealizes the motion of a SDOF structural system of ground or an 

underground structure.  The equilibrium equation of motion subjected to forces acting on a 

SDOF system is as follows: 

 

 ( ) ( ) ( ) ( )I D Ef t f t f t f t+ + =              (4.3.10) 

 

If (t)  is an inertia force, which represents the resistance to the change in velocity of the 

ground or underground structure.  The inertia force acts in the direction opposite to the 

acceleration, and its magnitude is ( )mu t .  

 

Ef (t)  is an elastic force by which the ground or underground structure tends to restore its 

configuration to the original position after deformation has taken place.  This force acts in 

the opposite direction to the displacement, and its magnitude is )(tku .  

 

Df (t)  is a damping force, which is a fictitious internal force dissipating kinetic energy and 

thereby decreasing the amplitude of a motion.  The damping force may develop in the form 

of internal friction.  It acts in the opposite direction to the velocity, and its magnitude is 

( )cu t . 

 

( )u t

( )f t
k

mc
f

Ef

Df

If (external force)(inertia force)

(external force)

(external force)

 

 (a) Idealized model                   (b) State of equilibrium 
 

Figure 4.3.1 Motion of a SDOF System 

 

 

The above forces are now summarized as,  
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( )
( )
( )

I

D

E

f mu t
f cu t
f ku t

=
=
=



              (4.3.11) 

 

where,  

m  : Mass 

c  : Damping coefficient 

k  : Elastic coefficient 

 

From the force equilibrium shown in Figure 4.3.1 (b), the equation of motion for a SDOF 

structural system is expressed as,  

 

 ( )mu cu ku f t+ + =                (4.3.12) 

 

Eq. 4.3.12 becomes the equation of damped free vibration if f(t)=0, and it further becomes 

the equation of undamped free vibration if the condition of c=0 is additionally imposed.  If 

f(t) is defined as an excitation force (or displacement, velocity, acceleration, etc.) relative to 

time, the equation then becomes to represent a forced vibration analysis problem.  The 

solution can be determined by using the modal superposition method or the direct 

integration method. 
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5.1 1-Dimensional Dynamic Analysis  
 

Free field analysis is referred to as the analysis for finding the response of the initial ground 

due to an earthquake input prior to constructing the structure in question.  Free field 

analysis is mainly used to predict the vibration of ground surface for determining the design 

response spectrum, calculate the dynamic stress and strain for liquefaction assessment, 

and determine the earthquake load that will cause the instability of foundations or retaining 

structures.   

 

Free field analysis is used to obtain the response of ground due to the vertical propagation 

of shear waves passing through the linear visco-elastic zone.  The ground to be analyzed 

comprises a number of layers, which are infinite in the horizontal direction, and the semi-

infinite base layer as shown in Figure 5.1.1.  Each layer is assumed to consist of a 

homogeneous and isotropic material.  The vibration is induced by the transmission and 

reflection of shear waves transferred through the ground in the vertical direction, and the 

displacements take place only in the horizontal direction. Therefore, the wave equation of 

Eq. (5.1.3) must be satisfied at every layer.  

 

2 2 3

2 2 22u u uG G
t x x t

ρ ξ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
     (5.1.1) 

 

u  is the horizontal displacement at the time t . ρ , G   and ξ  are mass density, shear 

elastic modulus and hysteretic damping ratio respectively.  

 

Expressing the displacement function as a harmonic function of Eq. (5.1.2), and 

transforming Eq. (5.1.1) into a frequency domain result in the governing equation of Eq. 

(5.1.3). The stress-displacement relationship is given by Eq. (5.1.4).  

 

( , ) ( , ) i tu x t u x e ωω=       
(5.1.2)

 

2
* 2

2 ( , ) ( , ) 0G u x u x
x

ω ρω ω∂
− =

∂
     (5.1.3) 
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*( , ) ( , )x G u x
x

τ ω ω∂
=

∂
     (5.1.4) 

 

where, ( , )xτ ω  is shear stress, and * (1 2 )G G i ξ= +  is complex shear elastic modulus. 

 

1

...

m

m+1
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u2
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um+1
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    m m mG ξ ρ

1 1 1    m m mG ξ ρ+ + +

    N N NG ξ ρ

Layer
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Coordinate
System

Propagation
Direction

Properties Thickness

 
         Figure 5.1.1 1-Dimensional free field analysis model  

 

 

The free field ground is generally expressed as shown in Figure 5.1.1 in order to obtain the 

solution to one-dimensional wave transmission equation.  The layer numbers are 

sequentially assigned from the ground surface.  The response of the m-th layer is 

expressed as mu .  The response is then expressed as a function of mx , which is the 

depth from the top of the m-th layer as shown in Eq. (5.1.5)-(5.1.6).   

 
* *

( , ) ( ) ( )m m m mik x ik x
m m m mu x A e B eω ω ω −= +

    (5.1.5) 
* ** *( , ) ( ( ) ( )m m m mik x ik x

m m m m m mx ik G A e B eτ ω ω ω −= −
   (5.1.6) 

 

where, 
* */m smk Vω= , * * /sm m mV G ρ= , and mA  and mB  are the layer response factors. 
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mA  is the elastic wave component transmitted upward, and mB  is the elastic wave 

component transmitted downward.  The compatibility condition of Eq. (5.1.7) and force 

equilibrium must be satisfied at the boundary with the adjacent layers. 

 

1 1

1 1

( ) ( 0)
 1,2,...,( 1)

( ) ( 0)
m m m m m

m m m m m

u x h u x
m N

x h xτ τ
+ +

+ +

= = = 
= − = = = 

   (5.1.7) 

 

Substituting Eq. (5.1.5) and Eq. (5.1.6) into Eq. (5.1.7) gives the relationship between the 

factors as shown in Eq. (5.1.8).  

 

* *

* *

1 1
* *

1 1 * *
1 1

, 1,2,...,( 1)

m m m m

m m m m

ik h ik h
m m m m

ik h ik hm m
m m m m

m m

A B A e B e
m Nk GA B A e B e

k G

−
+ +

−
+ +

+ +

 + = +
 

= − 
− = − 

 

  (5.1.8) 

 

Rearranging this to derive the relationship between the response factors of the adjacent 

ground layers, the recurrence equation of Eq. (5.1.9) is obtained. 

 

* *

* *

* *
1

* *
1

1 1(1 ) (1 )
2 2
1 1(1 ) (1 )
2 2

m m m m

m m m m

ik h ik h
m m m m m

ik h ik h
m m m m m

A A e B e

B A e B e

α α

α α

−
+

−
+

= + + −

= − + +
   

(5.1.9)
 

 

where, 

mh  : Thickness of m th
 layer 

*
mα   : Ratio of dynamic stiffness between the adjacent layers  

 

* *
*

* *
1 1

m m
m

m m

k G
k G

α
+ +

=       (5.1.10) 

 

Since the shear stress at the ground surface is always zero, it is clear that 1 1A B=  from Eq. 

(5.1.6).  Therefore, the response factor of the m th
 layer can be calculated by sequentially 

applying the recurrence equation of Eq. (5.1.9) from the first layer to the m th
 layer.  
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1

1

( ) ( ) ( )
( ) ( ) ( )

m m

m m

A a A
B b B

ω ω ω
ω ω ω

=
=

      (5.1.11) 

 

where, 1 1 1a b= =   

 

The transfer function, ( )ijH ω , between the boundaries of the layer i  and the layer j  is 

expressed as, 

 

( ) ( ) ( )( )
( ) ( ) ( )

i i i
ij

j j j

u a bH
u a b

ω ω ωω
ω ω ω

+
= =

+     (5.1.12) 

 

When the transfer function, ( )ijH ω  and the response, ( )ju ω  at the boundary of the layer 

j  are given, the response, ( )iu ω  at the boundary of the layer i  can be obtained as Eq. 

(5.1.13). 

 

( ) ( ) ( )i ij ju H uω ω ω=       (5.1.13) 

 

When the frequency domain analysis is used, the effect of nonlinear behavior of the ground 

is generally considered by the equivalent linearization technique.  The reason for using this 

equivalent linearization technique is that the frequency domain analysis basically assumes 

that the ground would behave linearly.  

 

Since the constant stiffness (shear modulus) and damping are applied at all times in 

frequency domain analysis, the change in stiffness due to actual shear strain cannot be  

considered as shown in Figure 5.1.2.  Therefore, the nonlinear behavior of the ground is 

considered by iteratively performing linear analysis with changing stiffness and damping 

ratio of the ground according to the shear strain obtained from the previous step, as shown 

in Figure 5.1.3.  In order to determine the stiffness and damping, the effective shear strain 

is used, which is obtained by multiplying the maximum shear strain obtained from the 

previous step as shown in Eq. (5.1.5) by a constant value less than one (e.g., 0.65).  The 

reason for the use of the effective shear strain is that the maximum shear strain induces 

larger deformation energy compared to the actual behavior, as shown in Figure 5.1.2.  The 

method of considering the nonlinearity of ground by using such an equivalent linearization 

technique is summarized in Table 5.1.1.  
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max max { ( )}t oct tγ γ=      (5.1.14) 

2 2 2 2 21( ) ( ) ( ) { ( ) ( )} 6 ( ) 6 ( )
3oct x z x z yz xzt t t t t t tγ ε ε ε ε γ γ= + + − + +  (5.1.15) 

 

 

 
     Figure 5.1.2 Difference between maximum shear strain and effective strain  

 

 

 

 
Figure 5.1.3 Process of convergence for nonlinear shear modulus and damping factor by equivalent linearization technique 

 

 

 
  Table 5.1.1 Procedures for free field analysis using equivalent linearization technique  

1. Define the initial values of the shear modulus ( G ) and damping ratio ( h ) of 

each layer. In general, values at very small strain are used.  

2. Calculate the maximum shear strain maxγ  at each layer by performing free field 

analysis using the initial values.  

3. Calculate the effective shear strain effγ  at each layer.  
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maxeff Rγγ γ= ×  

 

where, Rγ  is the ratio of the effective shear strain to the maximum shear strain for 

which 0.65 is used or the following value based on the magnitude of earthquake, M  

is used (Seed & Sun, 1992).  

 

 
1

10
MRγ

−
=  

 

4. Determine the shear modulus, G and h  according to the max/ effG G γ−  

curve and effh γ−  curve of each layer using the effective shear strain, effγ  of 

each layer.  

5. Repeat the steps from 2 to 4 until G  and h  converge. In general, a relative 

error less than 5% is considered to have converged, which takes place within 5 

iterations. 
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5.2 2-Dimensional Dynamic Analysis (Finite Element Method) 

 
5.2.1 Introduction 

 

The biggest difference between a soil-structure interaction problem and a general structural 

dynamics problem is the radiation damping, which stems from the infiniteness of the ground. 

While the general damping property dampens the structural motion by material friction, the 

radiation damping reduces the structural kinetic energy by releasing the wave energy into 

the infinite domain of the ground.  

 

Radiation damping is included in the equation of motion as a damping term, and its 

magnitude is dependent on the shape of the wave propagating outward.  Since the wave 

shape can be easily modeled in a frequency domain, frequency domain analysis can be 

efficiently used.  In general, ground materials are basically inhomogeneous, and the 

mechanical behavior of the ground is highly nonlinear.  

 

In order to accurately analyze soil-structure interaction problems, the important 

characteristics of radiation damping and nonlinearity must be simultaneously considered.  

Therefore, frequency domain analysis is used to readily model the radiation damping, and 

the material nonlinearity is analyzed using the equivalent linearization method.  

 

The analysis process entails the use of the standard frequency domain analysis using the 

FFT (Fast Fourier Transform), and the equation of motion composes an integrated ground-

structure system with the free field response as the input motion.  As such, the ground 

response and the structure response can be calculated in one operation.  The interpolation 

method of transfer function for a single degree of freedom system is used to reduce the 

number of frequencies for finding solutions to the equation of motion.  This method is used 

to obtain the interpolated value of the transfer function based on the solutions of the transfer 

functions for two consecutive frequencies.  Therefore, selecting the basic frequencies is 

very important, and a sufficiently high cut-off frequency needs to be defined to secure the 

validity of the ground motion analysis.  
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5.2.2 Equation of Motion  

 

From the results of free field analysis as mentioned above, the analysis is performed by 

inputting the seismic response at the bedrock as the input motion in the equation of motion 

of Eq. (5.2.1).  

 

[ ]{ } [ ]{ } { } { } { }M u K u m y F T+ = − + −      (5.2.1) 

 

where,  

{ }u        : Relative displacement vector of each node at the base of the model  

[ ]M   : Mass matrix of the two-dimensional soil-structure system with a unit thickness  

[ ]K        : Complex stiffness matrix of the two-dimensional soil-structure     

        system with a unit thickness, which includes the damping effect  

{ }m  : Mass vector in the direction of input motion  

y          : Input motion acting on the base of the model  

{ }V        : Force generated at the viscous boundary of three-dimensional   

            direction, as given by Eq. (5.2.2)  

 

1{ } [ ]({ } { })fV C u u
L

= −       (5.2.2) 

 

L  above represents the thickness of the plane system, [ ]C  is the diagonal matrix 

exhibiting the characteristic of free field, and { }fu  is the velocity vector of the free field.  

 

{ }F in Eq. (5.2.1) is characterized as the load acting on the vertical faces of the soil-

structure system, as given by Eq. (5.2.3).  

 

{ } [ ]{ }fF G u=       (5.2.3) 

 

[ ]G  is the complex stiffness matrix of free field, and { }fu  is the displacement vector of 

free field.  { }T  in Eq. (5.2.1) is the force generated by the horizontal transfer of wave 

energy, which is expressed as the transmitting boundary condition.  

 



 

 
SoilWorks 42 

Dynamic Analysis 

{ } ([ ] [ ])({ } { })fT R L u u= + −      (5.2.4) 

 

where, [ ]R  and [ ]E  are the stiffness matrices based on the frequencies of boundary 

conditions developed by Lysmer Drake and Wass. 

 

Assuming the input motion ( )y t  in Eq. (5.2.1) as the sum of a finite number of harmonic 

motions as shown in Eq. (5.2.5), frequency domain analysis is performed.  

 

/ 2

0
( ) Re s

N
i t

s
s

y t Y e ω

=

= ∑       (5.2.5) 

 

where, N  is the number of points representing the input motions.  Therefore, the 

response of a soil-structure system is given as Eq. (5.2.6) 

 

/ 2

0
{ } Re { } s

N
i t

s
s

u U e ω

=

= ∑       (5.2.6a) 

/ 2

0
{ } Re { } s

N
i t

f f s
s

u U e ω

=

= ∑      (5.2.6b) 

 

Substituting Eq. (5.2.6) and Eq. (5.2.2) into Eq. (5.2.1), and rearranging it provide Eq. 

(5.2.7). 

 

2([ ] [ ] [ ] [ ]){ }

{ } ([ ] [ ] [ ] ){ }
s s s s

s s s f s

K R L M U

m Y G R L U

ω+ + −

= − + + +     (5.2.7) 

 

In Eq. (5.2.7), { }f sU  can be expressed as Eq. (5.2.8), and { }f sA  is the transfer function 

with respect to the input motion at the base. 

 

{ } { }f s f s sU A Y=        (5.2.8) 

 

Substituting Eq. (5.2.8) into Eq. (5.2.7), and rearranging it result in Eq. (5.2.9).  [ ]sK  is the 

stiffness matrix with respect to the frequency of the system, and { }sP  is the load vector for 

the input motion of 1sY = .  
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[ ] { } { }s s s sK U P Y=        (5.2.9a) 

2[ ] [ ] [ ] [ ] [ ]s s s sK K R L M= + + −ω      (5.2.9b) 

{ } ([ ] [ ] [ ] ){ } { }s s s f sP G R L A m= + + −     (5.2.9c) 

 

Solving Eq. (5.2.10), which is obtained by dividing both sides of Eq. (5.2.9) by sY , [ ]sK  

and { }sP  are a function of frequency, ω , and { }sA  is also a function of frequency. 

 

[ ] { } { }s s sK A P=       (5.2.10) 

 

{ }sA  is thus obtained from Eq. (5.2.10), and { }u  of Eq. (5.2.6a) can be now written as Eq. 

(5.2.11). 

 

{ } Re { } si t
s su A Y e ω= ∑       (5.2.11) 

 

Also, the response in a time domain can be obtained by inverse transformation of Eq. (5.2.7) 

into a time domain using the FFT method.  
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5.3 Transmitting Boundary  

 
The fact that the ground exists in infinity, it is difficult to accurately simulate the actual soil-

structure interaction by a 2-dimensional model.  Therefore, the boundaries must be 

modeled at appropriate positions to reflect as closely to the actual site conditions as 

possible.   

 

The boundary conditions in ground modeling are divided into element boundary, viscous 

boundary and transmission boundary conditions.  The element boundary condition is 

further subdivided into free ends to which the force from earthquake response loading at the 

boundary for the free field is assigned, fixed ends to which the displacement is assigned, 

and rotating ends representing the horizontal and vertical rotating ends.  The element 

boundary condition can sufficiently consider the effects of earthquake waves for the free 

field, but cannot consider the effects of waves reflected from the foundation slab.  Also, 

such effects increase as the boundary is located closer to the foundation slab.  

 

In order to overcome the shortcomings of the element boundary condition, Kuhlemeyer, Ang, 

Newmark, et al. developed the viscous boundary condition that can absorb the material 

waves at a constant angle to the boundary.  Even then, the viscous boundary condition 

cannot completely consider the effects of complex surface waves, which necessitates 

adequate separation between the boundary and the foundation slab like the element 

boundary.  

 

The transmitting boundary condition has complemented certain limitations of the viscous 

boundary condition.  It can consider the effects of practically all material waves and surface 

waves.  The soil layers in the horizontal direction are represented by springs and dampers 

as a function of frequency.  Since it is generally assumed that the property of each soil 

layer in the horizontal direction is homogeneous, satisfactory results can be obtained for 

cases even where boundary conditions are assigned to the structure itself.  However, it is 

still effective to maintain certain distance between the boundary and the foundation slab in 

order to accurately consider the change in properties due to the strains in the horizontal 

direction.  
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