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In general, geotechnical analysis is often compared with structural analysis for its 
fundamental concept.  In structural analysis, the focus is placed on the uncertainty of 
applied loads such that various load cases are analyzed for a given structure, and the load 
cases are combined to determine the maximum force effects on each member for its design.  
On the other hand, geotechnical analysis is focused on construction sequence and 
uncertainty of ground materials.  Geotechnical engineers primarily place emphasis on 
analyzing the physical state and behavior of soils for numerical analysis.  Therefore, the 
analysis model must reflect the actual ground composition and construction conditions as 
much as possible using solid elements.  In addition, the analysis must reflect nonlinear and 
anisotropic characteristics of soils and the initial state of stresses of the ground in order to 
reflect the in-situ conditions as closely as possible.  
 
A geotechnical analysis software package must be able to simulate the actual site 
conditions in numerical modeling in order to determine the suitability of design and 
construction conditions.  As a total solution package for geotechnical engineering, 
SoilWorks is designed to provide all the necessary functions required for numerical analysis 
for tunnel engineering and soil/rock mechanics.  The analysis features included in are 
outlined below. 
 

A. Static Analysis 
1) Linear static analysis  
2) Nonlinear static analysis (Nonlinear elastic & elasto-plastic analysis) 

 
B. Construction Stage Analysis 

1) Nonlinear Analysis 
2) Steady Flow Analysis  
3) Transient Flow Analysis  
4) Consolidation Analysis  
 

C. Seepage-Stress Coupled Analysis 
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1.1 Introduction  
 
Static analysis is theoretically used for analyzing structures, which are not subjected to any 
kind of vibration.  However, in practice, it is often assumed that static analysis can be 
performed on a structure if the externally applied load has a frequency that is equal to or 
less than one third of the natural frequency of the structure.  Static analysis problems can 
be divided into linear and nonlinear behaviors according to the behavior type.  Linear 
behavior can be recognized as a special case of nonlinear behavior.  The primary sources 
of nonlinearity in static analysis are as follows:  
 

 Material nonlinear behavior  
 Geometric nonlinear behavior due to finite strain  
 Nonlinear behavior due to slip and separation at boundaries  

 
In geotechnical analysis, material nonlinear behavior is mainly used to analyze the soil 
behavior.  Material nonlinear behavior is often imposed even to a structure to simulate its 
detail behavior.  The types of material models that can be used to consider the material 
nonlinearity are as follows: 
 

 Linear elastic model  
 Nonlinear elastic model  
 Elasto-plastic model  
 Visco-elastic model  
 Visco-elasto-plastic model  

 
Among the above models, SoilWorks provides linear elastic, nonlinear elastic and elasto-
plastic models.  A more detailed list of the models is shown in the Material manual.  
 
Strains caused by the action of an object may be divided into infinitesimal strain and finite 
strain.  Most geotechnical problems relate to infinitesimal strain, and the mechanical 
relationship is defined based on the assumption that the strain in the ground is very small.  
The geometric nonlinear behavior exhibiting finite strain becomes apparent on significantly 
deformed structures consisted of ductile materials such as mild steel and rubber.  Even in 
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the case of a structure consisted of such ductile materials, the geometric nonlinear effects 
may be insignificant if the structure exhibits small deformation.  Therefore, the geometric 
nonlinear effects are not commonly considered in geotechnical problems provided that the 
deformation of the object in question is not so large. 
 
Nonlinear effects at boundary surfaces reflect the nonlinear behaviors taking place at the 
interfaces between different materials.  A variety of behaviors may occur at the interfaces 
between different materials such as shear slip, (crack) opening and contact depending on 
the types of external loadings.  In order to take into account such behaviors, it is common 
to define the behaviors of interfaces with the special types of elements.  The special types 
of elements and behaviors are summarized below. 
 

 Interface, Contact Element: slip, cracking or opening, contact, bending 
 Elastic Link: tension-only, compression-only, hook, gap 
 Spring1

 
: tension-only, compression-only, hook, gap 

The static analysis types provided by SoilWorks can be classified into the following based 
on the linearity of the behavior:  
 

 Linear static analysis 
 Nonlinear static analysis 

 
Even though linear behaviors are viewed as special forms of nonlinear behaviors, linear 
analysis is separated into an independent analysis type in SoilWorks because it is more 
convenient and intuitive to use.  In linear static analysis, the material model is limited to 
linear elastic models, which include truss element and elastic link element of tension-only, 
compression-only, hook or gap behavior.  Therefore, linear static analysis can be useful to 
observe the approximate behavior of the ground, to compose the initial condition of 
construction stage analysis or to perform a tunnel lining analysis.  
 
When linear static analysis is performed on the ground or a structure, which has been 
assigned with nonlinear material models, SoilWorks internally converts the material models 
into linear types and performs a linear static analysis.  
 

                                                             

1  Currently the spring element in SoilWorks does not consider the nonlinear behavior. 
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1.2 Linear Static Analysis  
 

Linear static analysis is used to determine the overall behavior of soil and rock structures by 
assuming that all ground elements are composed of linear elastic materials. Linear elastic 
behaviors of ground materials can be observed at the initial stage of loading application, 
which generates very small strain.  Linear static analysis neglects the failure mode and 
idealizes the stress-strain relationship as a straight line and is thus used for simple analysis 
such as determining the initial stress distribution or stress concentration in the original 
ground.  Theoretically, the solutions to nonlinear finite element equations are found by 
incremental equations.  The increments used in the incremental equations are formulated 
on the basis of linear elastic equations founded on Hooke’s Law.  Therefore, nonlinear 
elastic analysis and elasto-plastic analysis can be ultimately executed in the form of the 
linear elastic equations. 
 
The inception of nonlinear elastic or elasto-plastic analysis by finite element method 
became common in the practice of geotechnical engineering in early 1990s.  Initially, there 
were technical difficulties in performing nonlinear analysis in practice.  Relative to linear 
elastic analysis, long computation time was required for the convergence of nonlinear 
elastic or elasto-plastic analysis.  With the advent of the rapid development of computer 
analysis speed and the advancement in nonlinear elastic and elasto-plastic analysis 
algorithms, nonlinear analysis has been widely used.  Nevertheless, linear analysis is still 
widely used in practice for efficiency and intuitive results in conducting preliminary analysis 
of nonlinear materials and simple analysis involving materials of relatively small inherent 
nonlinearity. 
 
In most civil engineering analysis problems, questions can be condensed to “whether or not 
a structure is safe under a given set of loads” and “what the magnitude of deformation is 
prior to structural failure”.  In order to obtain geotechnical deformation, a stress-strain 
relationship is required.  However, the stress-strain relationships of geo-materials are very 
complex.  A stress-strain relationship varies widely depending upon the material 
composition, porosity, stress history and loading method.  
 
The simplest way to obtain the stress-strain relationship is assuming the linear elastic 
behavior of the ground.  Since stress-strain relationships exhibit very complex nonlinear 
material characteristics, it is not practical to mathematically represent them in numerical 
models.  In practice, the material models are idealized into a simpler form to model stress-
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strain relationships.  In the process of idealizing the material models, the modulus of 
elasticity and Poisson’s ratio alone cannot adequately address the ground behavior 
realistically.  But approximations can be made to analyze the behaviors at some specific 
stress states.  In such cases, a clear definition of the modulus of elasticity is required to 
idealize the material model. 
 
The key material parameter representing the material properties is the modulus of elasticity 
in which the concepts of Tangent modulus and Secant modulus are most widely used.  For 
a perfectly linear elastic material model, the Tangent and Secant moduli are identical.  The 
Secant modulus is often referred to as the deformation modulus of a nonlinear material in 
the stress range of interest. 
 
The equilibrium equation among the basic equations used for linear elastic analysis is 
expressed in Eq. (1.2.1). 
 

 =Ku p        (1.2.1) 

 
where,  

K  : Global stiffness matrix of ground and structures 
u   : Displacement vector 
p   : Load vector or unbalanced force vector 

 
From Eq. (1.2.1), the displacement vector can be determined.  This method is known as 
the displacement method, which obtains the displacement vector from the first found 
analysis results.  The strain is calculated from the displacement vector through the 
compatibility equation, and then the stress is determined from the strain through the 
constitutive equation. 
 
When a material undergoes deformation, as shown in Fig. 1.2.1, an internal point (x, y, z) of 
the material moves to new coordinates, (x+u, y+v, z+w).  Unless the element is a rigid body, 
the displacement vector U (u, v, w) continuously changes, which can be expressed as a 
function of x, y and z coordinates.  The infinitesimal length (dx, dy, dz) inside the material 
space having 3 directions generates new displacement vectors after deformation has taken 
place.   



 

 
SoilWorks 6 

Nonlinear Analysis 
 

x y

z

u
U v

w

 
 =  
  

 
 

Figure 1.2.1 Definition of displacement (u, v, w) 
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Applying uniaxial stress in an elastic material results in strain in the stress direction and also 
strain in the transverse direction due to the Poisson’s effect. 
 

 
z

z

x y z

E
σε

ε ε νε

=

= = −
      (1.2.3) 

 
where,  

, ,x y zε ε ε  : Strain components in the x, y and z directions 

  : Modulus of elasticity 
ν   : Poisson’s ratio 
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If shear stress, zxτ , acts on an element, the shear strain can be expressed as Eq. (1.2.4) 

 

 zx
zx G

τγ =        (1.2.4) 

 
where,  

G : Shear modulus 
 
Shear modulus can be derived from the modulus of elasticity and Poisson’s ratio. 
 

 ( )2 1
EG
ν

=
+       (1.2.5) 

 
The volumetric strain of a soil material is expressed as follows: 
 

 
( )

(1 2 )x y z
x y z

V
V E

σ σ σ
ε ε ε ν

+ +∆
= + + = −     (1.2.6) 

 
where,  

1 [ ( )]

1 [ ( )]

1 [ ( )]

x x y z

y y z x

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

             (1.2.7) 

 
Thus, the bulk modulus, K, can be defined as follows: 
 

 
[( ) / 3]

/ 3(1 2 )
x y z EK

V V
σ σ σ

ν
+ +

= =
∆ −

    (1.2.8) 

 
Due to the characteristics of the ground continuum, the use of the bulk modulus (K) and 
shear modulus (G) may be a little controversial.  But they are more conveniently used as 
they can be expressed more concisely and clearly compared to E and ν.  Figure 1.2.2 
illustrates the physical significance of K and G. 
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When boundaries are constrained horizontally and deformation occurs in one dimension, 
the constrained modulus, M, can be determined.  Eq. (1.2.9) and (1.2.10) give the 

equations for horizontal stresses and the constrained modulus for 0x yε ε= = respectively. 

 

 
1x y z
νσ σ σ
ν

= =
−

      (1.2.9) 

 
( )

( )( )
1

1 1 2
M E

ν
ν ν
−

=
+ −

     (1.2.10) 

 
The modulus of elasticity obtained from field testing is one of the moduli above.  This can 
be used in practice after appropriately converting the modulus. 
 
The boundary condition for one dimensional consolidation behavior is identical to that for 
the constrained modulus, which is closely related to the properties of one dimensional 
consolidation behavior in soft ground.  Table (1.2.1) summarizes the relationships between 
the one dimensional consolidation property parameters and the constrained modulus. 
 

      Table 1.2.1 Relationships between Consolidation Parameters and Constrained Modulus 

Consolidation Parameter Relationship with M 

Coefficient of volumetric change, vm  1
vm

M
=  

Coefficient of compressibility, va  01
v

ea
M
+

=  

Compression index, cc  0(1 )
0.435

va
c

ec
M
σ+

=  
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Table 1.2.2 Moduli of Elasticity and Poisson’s Ratios of rocks & other materials 

Material 
Modulus of Elasticity 
(tonf/m2) 

Poisson’s Ratio 

Amphibolites 9.4~12.1 ×106 0.28~0.30 

Anhydrite 6.8 ×106 0.30 

Siabase 8.7~11.7 ×106 0.27~0.30 

Siorite 7.5~10.8 ×106 0.26~0.29 

Solomite 11.0~12.1 ×106 0.30 

Sunite 14.9~18.3 ×106 0.26~0.28 

deldspathic gneiss 8.3~11.9 ×106 0.15~0.20 

Gabbro 8.9~11.7 ×106 0.27~0.31 

Granite 7.3~8.6 ×106 0.23~0.27 

Ice 7.1 ×106 0.36 

Limestone 8.7~10.8 ×106 0.27~0.30 

Marble 8.7~10.8 ×106 0.27~0.30 

mica Schist 7.9~10.1 ×106 0.15~0.20 

Obsidian 6.5~8.0 ×106 0.12~0.18 

Oligoclasite 8.0~8.5 ×106 0.29 

Quartzite 8.2~9.7 ×106 0.12~0.15 

rock salt 3.5 ×106 0.25 

Slate 7.9~11.2 ×106 0.15~0.20 

Aluminum 5.5~7.6 ×106 0.34~0.36 

Steel 20.0 ×106 0.28~0.29 
 
 
The values shown in Table (1.2.2) are based on testing results obtained from uncracked 
small specimens of various materials.  Accordingly, reduced moduli of elasticity of rock 
materials should be used to consider the discontinuity of materials in a large scale.  Figure 
(1.2.3) shows a graph indicating the testing data of elastic modulus reduction ratio relative 
to Rock Quality Designation (RQD).  RQD is defined as the cumulative length of core 
pieces longer than 100 mm within 1m of a core sample divided by the core length of 1m 
expressed in a percentage.  The higher the RQD value, the better is the rock quality.  An 
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RQD of 100% does not necessarily mean that the rock is perfectly continuous without 
defects.  Weathered rocks exhibit small RQD values.  
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Figure 1.2.3 Reduction in Ratio of Modulus of Elasticity ( /M LE E ) relative to RQD 

 
 
As shown in Figure 1.2.3, the Modulus of Elasticity reduces from 100% to 20% even at the 
RQD of 70%. 
 
The 3D stress-strain relationship of a material is expressed as follows: 
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The above equation can be rewritten in an inverse matrix form as,  
 

 

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

x x

y y

z z

xy xy

yz yz

zx zx

A

σ εν ν ν

σ εν ν ν

σ ν ν ν ε

ντ γ

ντ γ

ντ γ

−

−

−
=

−

−

−

    
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  (1.2.12) 

 
where, 

 
(1 2 )(1 )

E
A

ν ν
=

− +
 

 
That is, 
 
 εDσ=        (1.2.13) 
 

 ( ) / 3 ( )x y z x y zKσ σ σ ε ε ε+ + = + +     (1.2.14) 

 
where, 

 ( )3 1 2
EK
ν

=
−

 

 
The matrix D  related to the compatibility matrix is as follows:  
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1 2 2

2 1 2
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where, 
 1

2

3
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1.3 Nonlinear Static Analysis  
 

1.3.1 Introduction  
 
In geotechnical analysis, nonlinear behaviors are induced by the material nonlinearity of the 
ground.  The material nonlinear behavior is classified into nonlinear elastic, elasto-plastic 
and visco-elasto-plastic models depending on the behavioral assumption.  For a small 
strain problem, a nonlinear elastic model can be usefully applied.  For a large strain 
problem, which is related to the speed of applied load or settlement, visco-elasto-plastic 
analysis is appropriate.  In the majority of other cases, elasto-plastic analysis is used.  
SoilWorks supports only nonlinear elastic and elasto-plastic analyses. 
 
 
1.3.2 Nonlinear Elastic Analysis  
 
The elastic characteristic of a nonlinear elastic material changes with the analysis results.  
A hyperbolic model such as the Duncan-Chang model is a typical example of a nonlinear 
material model in which the stress and strain relationship can be expressed as a hyperbolic 
curve.  The ground parameters are a function of confinement stress and shear stress.  
The model is quite useful because it can be easily defined by ground material properties 
obtained from triaxial tests or published literatures.  But its shortcomings include inability to 
express a reduction in stiffness after failure has taken place. 
 

hyperbolic curveσ

ε  
 

       Figure 1.3.1 Stress-Strain Curve of Duncan-Chang model 
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1.3.3 Elasto-plastic Analysis  
 
1.3.3.1 Introduction  

 
Unlike the elastic behavior, the plastic behavior presents permanent deformation on the 
structure even after removing the applied load.  In order to represent such a  behavioral 
characteristic, the total strain can be divided into the elastic and plastic components as 
follows: 
 

pe εεε +=        (1.3.1) 
 

where,   
ε    : Total Strain 

eε   : Elastic Strain 

pε   : Plastic Strain 

 
Hook’s Law defines the stress-strain relationship in the elastic range, which is applied to Eq. 
(1.3.1) to define the stress as, 
 

)( pe εεDεDσ −==                                         (1.3.2) 
 
where, 
 σ   : Stress Vector  
 D   : Material Stiffness Matrix  
 
The stresses at a specific point in the structure subjected to loading become the measure of 
the state of elasto-plasticity.  Such a measure of evaluating the elasticity and plasticity is 
defined with respect to the characteristics of materials such as steel and concrete, which is 
referred to as the yield criterion.  The yield criterion of a material is defined on the basis of 
experimental data.  The stresses at the point of inducing the plastic flow can be expressed 
as a function in the stress space as below. 
 

( ),  0f κ =σ       (1.3.3) 

 
where,  
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f   : Yield function 
κ   : Hardening parameter  

 
No plastic flow takes place if the value of the yield function, f  is less than zero. Plastic 

flow occurs if f  is greater than zero. 
 
 
1.3.3.2 Plastic Flow Rule  
 

The yielding of a material initiates the plastic flow, which induces stress redistribution to 
maintain the equilibrium of the material.  The plastic flow is calculated in a nonlinear form 
and is generally formulated using an incremental form.  The representative variables for 
computing the plastic flow in the elasto-plastic analysis of a material are the incremental 
stress direction and the plastic strain direction.  Between these, the incremental stress 
direction can be written as below. 
 

 i
i

f∂
=
∂

n
σ

       (1.3.4) 

 
n  is the slope vector representing the direction of the incremental stress perpendicular to 
the yield surface.  i is the total number of yield functions in case of more than one. 
 
The incremental plastic strain can be separated into the magnitude and direction 
components following the Koiter’s law as follows: 
  

𝛆̇p =  ∑ λ̇1
∂gi
∂𝛔

= n
i=1 ∑ λ̇1𝐦i  n

i=1      (1.3.5) 

 

ig , being the plastic potential function, is a function ( i ( , )g κσ ) of the stress and the 

hardening parameter,κ  which is obtained from material testing.  The plastic multiplier iλ  

must satisfy the Kuhn-Tucker conditions as follows: 
 

0f ≤   ;   i 0λ ≥    ; i 0fλ =              (1.3.6) 

 

These conditions show that if the yield function f  is less than zero, then iλ  is always 
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zero and no plastic flow will take place. 
  
In Eq. (1.3.5), m  is defined as the directional vector of incremental plastic strain.  When

 is used to define the direction of the incremental plastic strain, using the yield 

function f  rather than using the plastic potential function g , this method is referred to as 

the associated flow rule.  When /g∂ ∂σ  is used to define the direction of the incremental 
plastic strain, using the plastic potential function, the method is referred to as the non-
associated flow rule.  In general, the associated flow rule is applied to material models, 
which exhibit constant deviatoric stress distribution along the hydrostatic axis in the stress 
space such as the von Mises and Tresca models. 
 
The non-associated flow rule is used for material models in which the deviatoric stress 
changes with the hydrostatic axis in the stress space such as the Mohr-Coulomb and 
Drucker-Prager models.  When the non-associated flow rule is used for such models with 
varying deviatoric stress along the hydrostatic axis, it has an effect of restraining excessive 
volume expansion (dilatancy effects) induced by the inconsistency of the directions of the 
stress and strain.  However, it is important to note that slower convergence is expected 
because the resulting non-symmetric stiffness matrix needs to be solved by a non-
symmetric solver. 

 
 
1.3.3.3 Linearized Consistency Condition  
 

The state of internal change in an elasto-plastic material is defined by the incremental 
constitutive relationship that is expressed in the form of infinitesimal increments.  The 
plastic flow begins when the stress point reaches the yield criterion, which is controlled by 
the parameter of plastic state such as κ . 
 
The constitutive equation for the state of infinitesimal strain in a non-associated plastic flow 
is founded on Eq. (1.3.2) as below. 
 

 𝛔̇ = 𝐃 ( 𝛆̇ −  𝛆̇p) =  𝐃 (𝛆̇ − λ̇ 𝐦 )    (1.3.7) 
 

When the stress point lies on the yield surface, the linearized consistency condition is 
defined through the first order expansion of Taylor series. 
 

/f∂ ∂σ
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 𝑓(̇𝛔, κ) =  �∂𝑓
∂𝛔
�
T
𝛔̇ +  ∂𝑓

∂κ
∂𝜅
∂λ

 λ̇ =  𝐧T𝛔̇ −  hλ̇ = 0   (1.3.8) 

 

where, 
f∂

=
∂

n
σ

, and the hardening modulus 
fh κ
κ λ
∂ ∂

= −
∂ ∂

. 

 
/f κ∂ ∂  is calculated from the f κ−  relationship based on experiments.  /κ λ∂ ∂  

depends on the material’s yield model, and it is calculated using the κ λ−  relationships 
defined for the individual yield models outlined in Section 1.2. 
 

Substituting Eq. (1.3.7) into Eq. (1.3.8) and rearranging it for the plastic multiplier λ  give 
the following:  
 

T

Th
λ =

+
n D ε
n Dm

         (1.3.9) 

 
Substituting Eq. (1.3.9) into Eq. (1.3.7) gives the incremental form of a stress-strain 
relationship: 
 

𝛔̇ =  �𝐃 −  𝐃𝐦𝐧T𝐃
h+ 𝐧T𝐃𝐦

� 𝛆̇ = 𝐃ep𝛆̇     (1.3.10) 

 
where, epD  is the elastic-plastic tangent operator that represents the tangent stiffness 
matrix of a material.  Introducing the non-associated flow rule at this point, because 

≠m n , epD  becomes a non-symmetric matrix. 
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1.3.3.4 Integration of incremental equations  
 

The integration methods for incremental equations can be largely divided into the explicit 
forward Euler algorithm with sub-increment and the implicit backward Euler algorithm. 
 
In the explicit forward Euler algorithm, the direction of plastic flow is obtained at the point A 
(refer to Figure 1.3.2 & 1.3.3), where the incremental stress intersects with the yield surface.  
In the implicit backward Euler algorithm, it is calculated at the point B (refer to Figure 1.3.4) 
of the final stress point. 
 
The explicit forward Euler algorithm is relatively simple and does not require iterative 
calculations at the integration points, but the following shortcomings are present: 
 

 Conditionally stable 
 Sub-increments are required to attain permissible accuracy (Figure 1.3.3) 
 Additional calibration is required for returning to the yield surface (Figure1.3.2) 

 
In addition, the consistent tangent stiffness matrix cannot be derived in the explicit forward 
Euler algorithm.  The implicit backward Euler algorithm produces sufficiently accurate 
results and is unconditionally stable without sub-increments or artificial returns, but it 
requires iterative calculations at the integration points.  However, this method is more 
efficient than the explicit forward Euler algorithm since a consistent tangent stiffness matrix 
can be constituted. 
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    (a) Location of the intersection point A 
 
 

 
 

   (b) Moving from A to C in the tangential direction and calibrating to point D 
 

Figure 1.3.2 Explicit forward Euler algorithm  
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Figure 1.3.3 Sub-increments in the explicit forward Euler algorithm 
 
 
 
1.3.3.5 Explicit forward Euler method  
 

In the explicit forward Euler method, the elastic stress increment is first calculated based on 
the assumption of elastic strain.  Refer to the point B in Figure 1.3.2(a). 
 

 e
XB σσσ

εDσ
∆+=

∆=∆ e

      (1.3.11) 

 
 
Next, the incremental stress defining the elastic limit is calculated.  The initial elastic stress 

increment is decomposed into the allowable stress increment ( ) e1 r− ∆σ  within the elastic 

region and the unallowable stress increment er∆σ  outside the yield function.  The stress 
increment defining the elastic limit is calculated from the following equation.  Refer to the 
point A in Figure 1.3.2(a). 
 

 

XB

B

e
X 0),)1((

ff
fr

rf

−
=

=∆−+ κσσ
     (1.3.12) 

 
For the subscripts in Eq. (1.3.10) and Eq. (1.3.11), refer to Figure (1.3.2). 
 

A

X

B B´ C

D

Yield surface

-∆λ mAA

-∆λ mBB

-∆λ mB´B´
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In order to apply the sub-increment method, the stress increment er∆σ  outside the yield 
function is subdivided into a number (k) of small sub-increments for approximation (Figure 
1.3.3).  The number of sub-increments is directly related to the margin of error, which is 
calculated from Eq. (1.3.13). 
 

 ( )effB effA effAINT 8 1k σ σ σ = − +      (1.3.13) 

 
where, effAσ  and effBσ  are the effective stresses at the points A and B in Figure 1.3.2(a) 
respectively. 
 
When the final stress point is not on the yield surface, the stress point is moved to the yield 
surface through iteration using a returning algorithm.  Refer to point D in Figure 1.3.3. 
 

 
CCCD

C
T
C

C
C

mDσσ
mDn

λ

λ

∆−=
+

=∆
h

f
      (1.3.14) 

 
 
1.3.3.6 Implicit backward Euler method 

 
The explicit backward Euler method always requires the calculation of the intersection point 
since the next stress point is estimated using the direction vector perpendicular to the yield 
surface at the intersection point A.  However, the calculation of the intersection point is not 
required if the direction vector perpendicular to the yield surface is estimated at the point B 
as shown in Figure 1.3.4. 
 

CBC mDσσ λ∆−=      (1.3.15) 

 
Iterative analysis is required to find the solution since both the left and right hand side terms 
have values at the unknown point C as shown in Eq. (1.3.15).  For such iterative analysis, 
the residual vector, r  is introduced, which represents the difference between the current 
stress and the backward-Euler stress. 
 

 CBC mDσσ λ∆−=      (1.3.16) 
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Figure 1.3.4 Implicit backward Euler algorithm  
 
 
The residual vector r  converges to zero when the final stress point is on the yield surface.  
During the iterative analysis, the first order expansion of Taylor series is used to define the 
new residual vector newr  as follows: 

 

𝐫new = 𝐫old + 𝛔̇ +  λ̇𝐃𝐦 +  ∆λ 𝐃 ∂𝐦
∂𝛔

 𝛔̇    (1.3.17) 

 
The residual vector newr  becomes zero due to the converged final stress.  Substituting 

new 0=r  into Eq. (1.3.17) and rearranging it for σ  gives Eq. (1.3.18). 
 

 𝛔̇ =  −  �𝐈 + ∆ λ 𝐃 ∂𝐦
∂𝛔
�
−1

 �𝐫old +  λ̇𝐃𝐦� =  −𝐑−1�𝐫old +  λ̇ 𝐃𝐦�  (1.3.18)  

 
Also using the first order expansion of Taylor series, the yield function can be written as, 
 

 𝑓𝑛𝑒𝑤 =  𝑓𝑜𝑙𝑑 +  𝜕𝑓
𝜕𝝈

 𝝈̇ + 𝜕𝑓
𝜕𝜅
𝜅̇ = 𝑓𝑜𝑙𝑑 +  𝒏𝑇𝝈̇ +  ℎ𝜆̇ = 0   (1.3.19) 

 
Now substituting Eq. (1.3.19) into Eq. (1.3.18) yields the following equation for λ : 
 

Yield surface
X

B
∆σ

e

C
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1
old old

1

Tf
h

λ
−

−

−
=

+
n R r

nR Dm
       (1.3.20) 

 
 
1.3.3.7 Constitutive matrix 

 
Constructing the plastic constitutive equation is explained below.  The infinitesimal stress 
increment is determined by the elastic part of the infinitesimal strain increment vector.  That 
is, 
 
 𝛔̇ = 𝐃 ( 𝛆̇ −   𝛆̇p) =  𝐃 𝛆̇ −  λ̇𝐃𝐦     (1.3.21) 
 
Since the current stress point must be always on the yield surface, the consistency 
condition must be satisfied.  Substituting Eq. (1.3.9) into Eq. (1.3.21) and arranging it for 
the infinitesimal strain increment, the infinitesimal stress increment can be calculated as Eq. 
(1.3.22). 
 

 𝛔̇ =  �𝐃 −  𝐃𝐦𝐧T𝐃
h+ 𝐧T𝐃𝐦

� 𝛆̇ = 𝐃ep𝛆̇     (1.3.22) 

 
The converged solution can be obtained faster due to the quadratic convergence property 
of the Newton-Raphson method when the consistent tangent stiffness matrix is used in the 
iterative process of the Newton-Raphson method in the explicit forward Euler method.  In 
order to consider this quadratic property, Eq. (1.3.15) is differentiated. 
 

 𝛔̇ = 𝐃𝛆̇ −  λ̇𝐃𝐦 −  ∆λ𝐃 ∂𝐦
∂𝛔
𝛔̇ −  ∆λ𝐃 ∂𝐦

∂κ
 ∂κ
∂λ

 λ̇  (1.3.23) 

 
where, λ  is the rate of change in λ∆ . 
 
Eq. (1.3.23) is rewritten as, 
 

𝐀𝛔̇ = 𝐃𝛆̇ −  λ̇𝐃𝐦�      (1.3.24) 
 

where, λ ∂
= + ∆

∂
mA I D
σ

, 
κλ

κ λ
∂ ∂

= + ∆
∂ ∂
mm m  
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Setting 1−=H A D , Eq. (1.3.24) can be rewritten as, 
 

𝛔̇ = 𝐇 ( 𝛆̇ −  λ̇𝐦�)      (1.3.25) 
 
Rewriting Eq. (1.3.25) with respect to the total strain term based on the linearized 
consistency condition gives the following:  
 

𝛔̇ =  �𝐇 −  𝐇𝐦�𝐧
T𝐇

h+ 𝐧T𝐇𝐦�
� 𝛆̇ =  𝐂ep𝛆̇     (1.3.26) 

 
epD  In Eq. (1.3.22) is referred to as the tangent stiffness matrix, and epC  in Eq. (1.3.26) is 

referred to as the consistent tangent stiffness matrix.  
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2.1 Introduction  
 

Numerical analyses in typical geotechnical applications can be considered to take place in 
construction stages.  Geotechnical analysis usually involves material nonlinear analysis in 
which the material nonlinear properties can be obtained from the initial condition of the 
ground.  The initial condition, which is the condition prior to any construction events, refers 
to the in-situ condition or initial ground stress.  In SoilWorks, all the material models are 
assumed to be linear elastic for the analysis of the initial ground condition. 
 
Once the initial ground stress is obtained, excavation loads can be obtained. In addition, the 
shear strength of a nonlinear material can be calculated by applying material properties 
such as Mohr-Coulomb.  Therefore, the construction stage analysis entails the entire 
construction process from the initial ground condition.  Since the actual sequence of 
construction on site is very complex and variable, the analysis is simplified to focus on the 
major construction events in sequence. 
 
For example, construction stages for a tunnel are shown below. 
 

1st Stage : Initial ground stress 
 2nd Stage : First face excavation 
 3rd Stage : Install reinforcement to first face + second face excavation 
 4th Stage : Install reinforcement to second face + third face excavation 
 5th Stage : Install reinforcement to third face + fourth face excavation 
 ……… (Continue) ………… 
 
SoilWorks considers the following items in construction stage analysis: 
 
1. Expression of Construction Stages 

  Activate/Deactivate ground elements 
Activate/Deactivate loads 
Modify boundary condition 
Reflect change in material properties 
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Load distribution ratio  
Groundwater level by construction stages  
Drained/undrained analysis  
Displacement initialization  
In-situ analysis  

 
2. Seepage Analysis 

Steady state flow analysis by construction stages 
Transient state flow analysis by construction stages 

 
3. Stress-Seepage Coupled Analysis  

Effective stress analysis using pore water pressure results obtained from ground water 
seepage analysis. 

 
4. Consolidation Analysis  

Consolidation analysis due to embankment, etc.  
 
Activation and deactivation of elements, activation and deactivation of loads and changes in 
boundary conditions take place at the first step of every construction stage.  New 
construction stages are created whenever any structural changes occur in the process.  
The number of construction stages thus increases with frequent changes in the structural 
system. 
 
When new elements are activated in a particular construction stage, the elements are not 
affected by the load history or internal stresses from the previous construction stages.  
This means that the newly activated elements in the corresponding construction stage will 
have zero stresses irrespective of the loadings acting on the structure. 
 
In case certain elements having a 100% load distribution factor are deactivated, all the 
internal stresses in the elements being deactivating are redistributed to the remaining 
elements of the structure causing stress changes in the remaining elements.  Conversely, 
if certain elements having a 0% load distribution factor are deactivated, no redistribution of 
the stresses in the elements being deactivated takes place, resulting in no changes in the 
stresses in the remaining elements in the structure. 
 
The load distribution factor controls the magnitude of stress transfer from the deactivated 
elements to the remaining elements.  This function becomes very useful when the user has 
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to consider partial stress relaxation even after the elements have been removed.  In the 
case of tunnel analysis, the stresses in the excavated elements are not transferred at once.  
Instead, the stresses are gradually redistributed to the rock bolts and shotcrete over a 
number of construction stages.  In such a case, the load distribution factor is used to reflect 
partial relaxation of stresses over the ensuing stages.  
  
SoilWorks does not perform analyses of independent analytical models for individual 
construction stages.  Instead, only the changes in the structural system, loads and 
boundaries are defined at each stage, and the analysis results from the previous stages are 
reflected and analyzed with the changes at the current stage in the concept of an 
accumulated model.  Therefore, any changes in the structure or loadings in the preceding 
stages influence the results in the current and subsequent construction stages.  For 
example, once a load is applied to the structure in a preceding construction stage, the load 
remains active for the subsequent construction stages.  Even the elements activated in the 
preceding stages remain active for the current and subsequent stages.  Only the new 
elements or elements to be removed at each stage need to be defined.    
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2.2 Activation and Deactivation of Elements  
 
The elements that are activated in a construction stage are assigned with zero initial 
stresses at which point their self weights are applied to the existing structure.  These 
activated elements will become part of the total structure in the subsequent stages.  
 
All ground elements are subject to stresses until they are deactivated.  If any loads are 
acting around the deactivated elements, the remaining elements must not impose stresses 
on the new free faces through appropriate stress relaxation.   
 
In Figure 2.2.1, the object A is assumed to be removed from the object B.  
 

The stresses in the object A and the object B are AOσ and BOσ  respectively prior to 

removal of the object A.  All the external forces have been reflected in these stresses.  

Since these two objects are in equilibrium, the load, ABF  must be applied to the object B to 

maintain the stress, BOσ .due to the object A.  Similarly, the load, BAF  must be applied to 

the object A.  Therefore, any excavation load acting on a boundary depends on the stress 
state of the elements being excavated and the self weights of the elements.  This is 
expressed in Eq. 2.2.1. 
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A

B
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BOσ

T ABF

ㅡ T BAF

(a)

(b)

(c)  
 

      Figure 2.2.1 Concept of Element Deactivation & Equilibrium Forces 
 

 
 

 
A A

T T
BA AO A AV V

F dV dVσ γ= − +∫ ∫B N     (2.2.1) 

 
where,  

B   : Strain-Displacement matrix 

 AV   : Volume of excavation 

 N   : Element shape function 
γ   : Unit weight of ground 

 
The global stiffness for the current construction stage is calculated by assembling the 
stiffness of each activated element as shown in Eq. (2.2.2).  All the elements used in all the 
construction stages are stored in the database, and the element data pertaining to the 
current stage is added through searching all the elements activated from the initial stage to 
the current stage.  And the data for the deactivated elements is removed.  
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1

n
T
i i i

i=
= ∑K L k L       (2.2.2) 

 
where,  

K   : Global stiffness of the current construction stage 

iL   : Matrix defining the location of element stiffness  

within the structural stiffness 

ik   : Element stiffness activated at the current construction stage 
n    : Total number of elements activated at the current construction stage 
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2.3 Activation and Deactivation of Loads  
 
The construction stage analysis consists of phased analysis in an incremental form for 
which the incremental load of the current construction stage is required.  The incremental 
load current∆F  at the current construction stage is the difference between the total load 

currentF  at the current stage and the total load previousF  at the immediately preceding stage.  
 

current current previous∆ = −F F F      (2.3.1) 
 
All the loads used in all the construction stages are stored in the database, and the total 
load currentF  pertaining to the current stage is added through searching all the loads 
activated from the initial stage to the current stage.  And the data for the deactivated loads 
is removed. 
 
The total loads at the current construction stage can be classified into surface forces and 
body forces. 
 

current current current
surface body= +F F F      (2.3.2) 

 
The surface forces include the loads related to nodes such as nodal or distributed loads, 
and the body forces include the loads related to elements such as self-weights.  While the 
surface forces are assembled by using the information of the degrees of freedom of the 
nodes to which the loads are imposed, the body forces are assembled by using the matrix 

iL  in Eq. (2.2.2) since the forces are related to adding and subtracting elements.  

 
The sub-incremental load step at a given construction stage is calculated by the incremental 
load current∆F  in Eq. (2.3.1) multiplied by a load factor α  already defined within the 

current construction stage.  It can be expressed for a specific load step i  as,   
 

current previous current current
i iα= + ⋅ ∆F F F     (2.3.3) 

 
The linear algebraic equation of static analysis to calculate the response of a structure for a 
specific load step i  is given as, 
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ubf
i i i=F K d       (2.3.4) 

 

iK  above represents the global stiffness at the i th load step, and id  represents the 

nodal displacement at the i th load step.  ubf
iF is the unbalance force at the i th step, 

which is defined by subtracting the total internal force at the previous step from the total 
current load.  
 

ubf current internal
1i i i−= −F F F       (2.3.5) 

 

In Eq. (2.3.5), current
iF  has been already defined in Eq. (2.3.3), and internal

1i−F  is the total 

internal force of the structure at the previous load step, which is calculated using the 
element stresses at the previous load step.  
 

 ( )∑ ∫∑
==

− ==
n

j
V jjj

n

j
j

T
ji dV

1

TT

1

internal
1 σBLfLF     (2.3.6) 

 
where,  

jf   : Element member force 

 jL   : Matrix defining the location of element loading within the total load  

 jB   : Matrix of slope of displacement-strain relationship  

 jσ   : Element stress  

 V   : Volume  
 n    : Number of elements activated at the current construction stage  
 

For 1i = , internal
0F  is the total internal force of the final load step of the previous 

construction stage.  The element stress is updated after calculating for each load step 
within the construction stage.  
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2.4 Activation and Deactivation of Boundary Conditions  
 

Similar to the elements and loads, all the boundary conditions used in all the construction 
stages are stored in the database, and the activated boundary conditions are added through 
searching all the boundary conditions activated from the initial stage to the current stage.  
And the data for the deactivated boundary conditions is removed.  At this point, free nodes 
may exist, which are not part of any elements due to boundary conditions added and 
elements removed at the current stage.  Such free nodes are removed using the nodal 
data associated with the active elements, thereby improving the analysis speed through 
eliminating the redundant nodal degrees of freedom. 
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2.5 Load Distribution Factor  
 
In order to simplify the construction stage analysis, the concept of load distribution factors is 
introduced.  This is a numerical technique, which enables the user to sequentially reflect 
the effects of change in elements to simulate a number of construction stages.  Distribution 
factors are applied when construction stages are condensed in a 3 dimensional analysis, or 
when a 3 dimensional model is simplified to a 2 dimensional model. 
 
For example, suppose that stress relaxation takes place sequentially over 3 stages by 40%, 
30% and 30% from an excavation stage.  In SoilWorks, the user can define the excavation 
stage and activate the load distribution factor option.  The user can then simply enter 0.4, 
0.3 and 0.3 for ‘Subsequent Stage 0, 1 and 2’ respectively. 
 

 
 

Figure 2.5.1 Load Distribution Factor Dialog Box 
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2.6 Initialization of Displacements  
 
During a construction stage analysis, the condition for initializing displacements may 
become necessary.  For instance, the displacements must be initialized after performing 
construction stage analysis including the initial condition.  Since the displacements can be 
initialized at any construction stage in SoilWorks, a number of intermediate stage analyses 
can be considered to obtain the initial stage condition. 
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2.7 Change in Material Properties  
 
Changes in ground material properties may be required in construction stage analysis such 
as to reflect any ground improvements or disturbance and material hardening over time.  
Structural properties may also change due to curing of lining concrete or a change in lining 
thickness.  SoilWorks allows changes in material properties an unlimited number of times.  
The analysis of changed properties is performed in continuation from the results of the 
preceding stage (displacements, stresses, strains, etc.).  
 
In case of linear elastic materials, the material properties can be freely changed, but care 
should be used when dealing with nonlinear material models. 
 
For instance, if a nonlinear material model such as soil is excavated and backfilled with a 
different material in a construction stage analysis, the user may attempt to change the 
material properties only without actually removing and adding the elements.  Such a 
practice is physically incorrect because the stress state from the previous stage will be 
reflected in the next stage.  Therefore, changing the material properties of a nonlinear 
material model requires removal of the elements first and addition of new elements with the 
change in material properties.  In case new elements are added, SoilWorks initializes the 
stresses, strains and internal state variables of the new elements to zero.  
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2.8 In-situ Stress  
 
 

SoilWorks provides the following two methods for computing in-situ stresses. 
 

2.8.1 0K  Method  
 
The K0 method defines the initial stress by calculating the horizontal stress from the vertical 

stress using a non-dimensional coefficient, 0K , where 0 /h vK σ σ= . 
 

The vertical stress vσ  is first obtained by performing a self-weight analysis, and then the 

horizontal stress is obtained using the relationship, 0h vKσ σ= .  In this case, the shear 
stresses on the vertical and horizontal planes of the soil element remain unchanged from 
the results produced from the analysis. 
 

If the ground surface is horizontal, this method presents no problem.  If the surface, 
however, is not horizontal, the stress state determined by this method under the self weight 
will not be in the state of equilibrium.  As such, the un-equilibrated internal forces from the 
selfweight and the stress state calculated above must be used for analysis to reach an 
equilibrium state.  This stage can be performed by introducing a null stage at which no 
conditions change.  After the analysis for the null stage, the total system becomes in 
equilibrium, which is used as the state of initial stress. 
 
 

2.8.2 Self Weight Analysis Method 
 
The initial stress state is determined by the stress state obtained by self weight analysis.  If 
the ground surface is horizontal, this method becomes identical to that of the K0 method, 

0 /(1 )K ν ν= − .  Otherwise, the results will differ from those of the K0 method, and shear 

stress will exist because horizontal strains exist. 
 
Generally, this method is suitable for a sloped ground surface. This method, however, does 
not allow the user to specify a K0 value greater than 1.  If K0 is required to be defined with 
a value greater than 1, then the K0 method is first used and a null stage is used to satisfy an 
equilibrium condition. 
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2.9 Undrained Analysis  

 
In SoilWorks, undrained analysis can be applied only to the selected elements and 
associated construction stages.  There are two mandatory steps to perform undrained 
analysis in SoilWorks.  First, the material properties for the undrained analysis are defined 
in the material model’s drainage parameters.  The second step involves definition of 
undrained analysis when construction stages are defined.  If the drainage parameter option 
“undrained” is selected, and undrained analysis is not performed in the construction stage, 
the material will exhibit drained behavior.  Conversely, if the drainage parameter option 
“drained” has been selected, and undrained analysis is performed in the construction stage, 
the material will also exhibit drained behavior.  In order to perform undrained analysis, both 
the undrained properties in the material properties and undrained analysis in the 
construction stage must be defined.  
 
It is also possible to simulate drained and undrained analyses alternately by construction 
stages.  When undrained analysis was conducted in the previous stage, and drained 
analysis is conducted in the current stage, it can be observed that the pore water pressure 
decreases due to the dissipation of excessive pore water pressure.  When drained analysis 
was conducted in the previous stage, and undrained analysis is conducted with applied 
loading in the current stage, it can be also observed that the pore pressure changes due to 
an increase in excessive pore water pressure. 
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3.1 Introduction 
 

Groundwater seepage phenomenon is caused by the difference in water heads at the 
boundaries in the seepage zone or the flux boundary condition.  As the groundwater flows, 
seepage force is developed due to the friction between the water and soil particles.  This 
process induces displacements and stresses.  Seepage force is expressed as the 
integration of the pore water pressure. 
 
SoilWorks attains the seepage force effect using the pore water pressure obtained by 
seepage analysis. 
 
Pore water pressure is the product of the weight density of water and the pressure head 
(total head - elevation head).  In general, the seepage force is concentrated in the zone 
adjacent to the outflow boundaries where the total head suddenly reduces.  Due to the low 
constraint pressure, shear and tensile strengths are relatively low in this zone.  As a result, 
when the effective stress is analyzed considering the seepage pressure in soils, the ground 
can easily fail unlike rock conditions.  Therefore, stress-seepage coupled analysis is a very 
important aspect in the stability analysis of soils. 
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3.2 Effective Stress 
 

Pore water pressure in ground influences the total stress.  According to the Terzaghi’s 

principle, the total pressure can be divided into effective stress ( )σ ′ and pore water 

pressure (pw). 
 
Since water cannot resist any shear stress, the effective shear stress is equal to the total 
shear stress.  Thus, the total stress is expressed as,  
 

 

xx xx w

yy yy w

zz zz w

xy xy

yz yz

zx zx

p
p
p

σ σ
σ σ

σ σ
τ τ

τ τ

τ τ

′= +
′= +

′= +
′=

′=

′=

      (3.2.1) 

 

where, the pore water pressure ( )wp in turn can be divided into steady state pore water 

pressure ( )steadyp  and excess pore water pressure ( )excessp . 

 

 w steady excessp p p= +       (3.2.2) 

 
The steady state pore water pressure, being the input data obtained from the groundwater 
analysis, is created by the height of the groundwater table.  The excess pore water 
pressure is created during the stress calculation of a material, which exhibits an undrained 
behavior, or the consolidation analysis.  Calculation of excess pore water pressure is 
described in more detail in the Chapter 2.9 Undrained Analysis or Consolidation Manual. 
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3.3 Governing Equation  
 
The inverse elastic Hooke’s law is considered to derive the Hooke’s law expressed in 
infinitesimal strains. 
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where,  

,E ν  : Effective material properties – modulus of elasticity  

           and Poisson’s ratio respectively.  
 
However, since the derivative of the steady state component is zero, 
 

 w excessp p=        (3.3.2) 

 
By applying the terms in Eq. 3.2.1, the above Eq. (3.3.1) can be rewritten as follows: 
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The element library in SoilWorks is classified as follows depending on the purpose of use: 
 
1) Geotechnical element 

 Plane strain element 
 

2) Structural element 
 Truss element 
 Embedded truss element 
 Beam element 
 

3) Applied element 
 Interface element 
 Pile, rock bolt, anchor & nail elements 
 Pile tip bearing element 
 Geogrid element 
 Elastic link 
 Rigid link 
 Nodal spring 

 
Finite elements are created by the connecting nodes, which define the locations, shapes 
and sizes.  The element types, material properties and stiffness data are also defined.  
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4.1 Plane Strain Element  
 

4.1.1 Overview  
 
Plane strain elements in SoilWorks can be utilized to simplify a long structure having a 
uniform cross section throughout its entire length, such as dams and tunnels.  Figure 4.1.1 
depicts the simplification of a 3-D shape into a 2-D shape section represented by the grey 
unit thickness.  
 

 
 

Figure 4.1.1 Thickness of two-dimensional plane strain elements  
 
 
Because a plane strain element is formulated on the basis of its plane strain properties, no 
strain is assumed to exist in the thickness direction and the stress component in the 
thickness direction can be determined through the Poisson’s effect. 
 
The plain strain elements can be used together with all other structural and application 
elements such as truss, beam, interface and elastic link elements and can be used in finite 
element analysis involving dynamic, tunnel, slope stability and soft ground analyses. 
 
Triangular or quadrilateral shapes are available for plane strain elements.  Plane strain 
elements retain tension, compression and shear stiffness in the in-plane direction, and 
tension and compression stiffness in the thickness direction.  It is recommended that 4-
node quadrilateral elements or higher order 6-node or 8-node elements be used rather than 
using 3-node triangular elements as shown in Figure 4.1.2.  It is also recommended that 

1.0(unit thickness) 

plane strain elements 
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the aspect ratio of an element shape be close to 1.0, as is in the case of an equilateral 
triangle or a square.  

 
 
4.1.2 Element Shape, Nodal Connectivity and Degrees of Freedom 
 
The element shapes, element local coordinate systems, degrees of freedom and node 
numbering convention supported by SoilWorks are defined in Figure 4.1.2.  The analysis 
results for plane strain elements are produced in the GCS since the GCS is more effective 
in representing the characteristics of ground elements.  Therefore, the element coordinate 
systems shown in Figure 4.1.2 are not so meaningful, and the nodal forces are produced in 
reference to the GCS.  
 
The plane strain elements retain only two translational degrees of freedom in the horizontal 
and vertical directions at each node on the selected plane in the GCS. 
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 (a) Quadrilateral Elements 
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 (b) Triangular elements 
 

Figure 4.1.2 Arrangement of plane strain elements, element coordinate systems and nodal forces 
 
 
The node numbering sequence follows the counter-clockwise direction.  For higher order 
elements, the mid-node numbers are assigned after the corner nodes have been numbered. 
 
The plane strain elements in SoilWorks are used in a 2-dimensional model.  If the plane of 
the elements is set to the X-Z plane, the gravity direction is defined in the negative (-) Z 
direction.   
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4.1.3 Element Material Properties  
 
When ground elements are modeled as plane strain elements in a linear elastic model, the 
following material parameters are basically required: 
 

Modulus of Elasticity   : E  
Poisson’s Ratio   : ν  

Weight Density   : tγ  

Saturated Weight Density  : satγ  

Initial Stress Parameter  : 0K  

Thermal Coefficient   : α  
 
In addition, SoilWorks supports all the nonlinear ground material models of 2D ground 
elements using plane strain elements.  Refer to the manual of Material Nonlinear Models 
for additional material properties. 
 
Plane strain elements can be utilized to simplify the 3-dimensional behavior of a long 
structure.  Since the normal strain, shear strain and shear stress in the thickness direction 
are zero, the elements are assumed to behave in the 2-dimension.  The constitutive 

equation of a plain strain element is Dεσ= .  In the case of an isotropic linear elastic 

material, the equation is expressed in a matrix form as follows: 
 

1 0
1 0

1 0 0(1 )(1 2 )
1 20 0 0

2

xx xx

yy yy

zz zz

xy xy

E

ν ν νσ ε
ν ν νσ ε
ν ν νσ εν ν

ντ γ

−        −    =  −   =+ −     −    
     

 (4.2.1) 

 
The thickness being the structural property of plane strain elements, a unit thickness (1.0) is 
automatically considered in the direction normal to X-Z plane as shown in Figure 4.1.1.  
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4.1.4 Finite Element Formulation  
 
In SoilWorks, plane strain elements are formulated on the basis of the isoparametric plane 
strain, and the numerical equation implemented is shown below. 
 

 T T T
nA A L

t dA bt dA pt dL= + +∫ ∫ ∫B DB u N N p                (4.1.2) 

 
where, 

L   : Length of element boundary 
t   : 1.0 (unit thickness) 

 
From Eq. (4.1.2), the shape function, N, can be of a maximum of a quadratic function.  The 
3-node triangular and 4-node quadrilateral elements are linear elements, and the 6-node 
triangular and 8-node quadrilateral elements are quadratic elements as shown in Figure 
4.1.2. 
 
The shape functions are defined as follows depending on the element types: 
 

 3-Node element 

1

2

3

1N
N
N

ξ η
ξ
η

= − −
=
=

      (4.1.3) 

 
 4-Node element 
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 6-Node element 
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N N
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    (4.1.5) 

 
 8-Node element 



 

 
SoilWorks 50 

Nonlinear Analysis 
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   (4.1.6) 

 
The strain of a plane strain element is expressed as the following engineering strain: 
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Accordingly, the strain-displacement matrix is defined as, 
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The Jacobian matrix is expressed in Eq. (4.1.9): 
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The numerical integration for the plane strain elements is shown as, 
 

 1 2
1

n
T T

j j j j j jA
j

t dA t W W
=

→ ∑∫ B DB B D B J             (4.1.10) 

 
where, 

1 2,j jW W   : Weight factors for the directions of ,ξ η  of integration points 

 
  

4.1.5 Generation of Element Results 
 
The results of 2-D plane strain elements include internal forces, stresses and strains.  
There are no differences in the result items between triangular and quadrilateral elements 
or low and higher order elements.  The results are produced in the GCS due to the 
characteristics of ground elements. 
 
 
4.1.5.1 Element Force Results  
 

The internal forces of the elements are produced at each node.  The sign convention for 
the internal forces is shown in Figure 4.1.3.  The directions of the arrows represent the 
positive (+) directions. 
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Figure 4.1.3 Sign convention and nodal forces of plane strain elements 
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4.1.5.2 Element Stress and Strain Results  
 

The stresses and strains of an element are converted into the nodal results by extrapolating 
the stresses calculated at the integration points (Gauss Points). 
 
The results at the center point of an element are also produced by using the average of the 
values at the integration points. 
 
Figure 4.1.4 shows the sign convention for element stresses and strains. The arrows 
represent the positive (+) directions. 
 

,XZ XZτ γ

,XX XXσ ε

,XZ XZτ γ

,ZZ ZZσ ε

X

Z

 
 

Figure 4.1.4 Sign convention for stresses and strains of a plane strain element 
 
 
The stress results for the plain strain elements are generated as follows: 
 

 XXσ ′   : Effective normal stress in the GCS X direction 

 YYσ ′   : Effective normal stress in the GCS Y direction 

 ZZσ ′   : Effective normal stress in the GCS Z direction 

 XXσ   : Total normal stress in the GCS X direction 

 YYσ   : Total normal stress in the GCS Y direction 

 ZZσ   : Total normal stress in the GCS Z direction 
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 XZ ZXτ τ=  : Shear stress in the GCS X-Z plane 

1 2 3,  ,  σ σ σ : Effective principal stresses in the directions of principal axes, 1, 2 and 3 

maxτ   : Tresca (maximum shear stress) = 3 2 2 1 3 1max , ,
2 2 2

σ σ σ σ σ σ− − − 
  

 

vmσ   : von Mises stress = ( ) ( ) ( )[ ]2
13

2
32

2
212

1 σσσσσσ −−−−−  

meanσ ′   : Mean effective stress = XX YY ZZ

3
σ σ σ′ ′ ′+ +  

meanσ   : Mean total stress = XX YY ZZ

3
σ σ σ+ +  

 
The strain results for the plain strain elements are generated as follows: 
 

XXε   : Normal strain in the GCS X direction 

 YYε   : Normal strain in the GCS Y direction 

 ZZε   : Normal strain in the GCS Z direction 

 ZXXZ γγ =   : Shear strain in the GCS X-Z plain 

1 2 3,  ,  ε ε ε  : Principal strains in the directions of principal axes, 1, 2 and 3 

maxγ   : Tresca (maximum shear strain) = 3 2 2 1 3 1max ,  ,  
2 2 2

ε ε ε ε ε ε− − − 
  

 

devε   : Deviatoric strain = ( ) ( ) ( ){ }2 2 2
1 2 2 3 3 1

2
9

ε ε ε ε ε ε− + − + −  

volε   : Volumetric strain = XX YY ZZε ε ε+ +  
p
XXε   : Plastic normal strain in the GCS X direction 

 p
YYε   : Plastic normal strain in the GCS Y direction 

 p
ZZε   : Plastic normal strain in the GCS Z direction 

 P
ZX

P
XZ γγ =  : Plastic shear strain in the GCS X-Z plain 
p p p
1 2 3,  ,  ε ε ε  : Principal plastic strains in the directions of principal axes, 1, 2 and 3 

pε  : Equivalent plastic strain = ( )p2 p2 p2
1 2 3

2
3
ε ε ε+ +  
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4.2 Truss element 
 
4.2.1 Overview  
 
The truss element is a structural element, which is used to simulate anchors, nails, rock 
bolts and piles with neglected bending behavior.  The truss element is generally used for 
modeling space trusses and/or diagonal braces and can be used for both static (linear & 
nonlinear) and dynamic analyses.  
 
SoilWorks supports only a low order 2-node truss element. 
 
Since a truss element retains no rotational stiffness or rotational degrees of freedom at the 
end nodes, singularity may occur in analysis when other truss elements or the elements 
having no rotational degrees of freedom are connected to a truss element.  SoilWorks 
automatically restrains the rotational degrees of freedom at such a node to prevent singular 
errors. 
 
Singular errors do not occur when truss elements are connected to beam elements having 
rotational degrees of freedom.  
 
 
4.2.2 Element Shape, ECS, Nodal Connectivity & Degrees of Freedom  
 

The element shape and element coordinate system are given in Figure 4.2.1.  The truss 
element is a structural element, and the element’s local x-axis (axial direction) is the only 
direction of interest in analysis and results, unlike ground elements.  The element local x -
axis is assumed to orient in the direction from the node 1 to node 2.  
 
A truss element retains only one translational degree of freedom in the direction of the ECS 
x-axis.  When a truss element is inclined on a 2-dimensional plane, the boundary condition 
should be defined in the direction of the inclined ECS x-axis to obtain accurate results.  
The boundary condition in the element’s x-axis direction can be defined by aligning the 
node local coordinate system with the element’s ECS x-axis.  
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1
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,xx xxσ ε

,xx xxσ ε

X

Z

GCS

 
 

     Figure 4.2.1 Element Coordinate System of a truss element and the sign convention for Stress/Strain  
 
 
4.2.3 Element Material Properties  
 
A truss element being a structural element, its linear elastic material properties are defined 
as follows: 
 

Modulus of Elasticity   : E  
Poisson’s Ratio   : ν  

Weight Density   : tγ  

Thermal Coefficient   :  α 
 
Truss elements only transmit axial forces.  Truss elements can be assigned tension-only 
(with a gap distance), compression-only (with a hook distance) and nonlinear elastic 
properties. 
 
The constitutive equation for a truss element is identical to Eq. (4.2.1), and an isotropic 
linear elastic material can be expressed in a matrix form as,  
 

xx xxEσ ε=       (4.2.1) 

 
The structural properties of a truss element are a cross sectional area and spacing. 
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SoilWorks’ Section Library supports various shapes.  Simply entering the section 
dimensions will automatically calculate the cross sectional area.  The prismatic section of a 
constant cross sectional area is assumed along the length. SoilWorks supports the following 
section shapes: 
 

 Solid Round :  

 Solid Rectangle :  

 Pipe  :  

 Box  :  

 H-Section  :  

 T-Section  :  

 Rebar  : Cross sectional area defined by the user 
Strand  : Cross sectional area defined by the user 
User-defined section : Cross sectional area defined by the user 

 
The spacing feature enables the user to reflect the effect of three-dimensional spatial 
reinforcement.  For example, when two truss elements are placed per meter in the 
thickness direction in a two-dimensional model, the spacing becomes 0.5 and the stiffness 
of the truss reinforcement in a unit thickness becomes doubled.  In analysis, the stiffness 
of a unit thickness is used.  The truss forces in the results are however produced for each 
truss reinforcement element. 
 
 
4.2.4 Finite Element Formulation  
 
A truss element retains only the translational displacement, u , in the direction of ECS x-
axis. 
 

{ }i iu=u         (4.2.2) 

 
A specific coordinate x and the translational displacement u are expressed in Eq. (4.2.3) 
and (4.2.4), using the shape functions. 
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2

1
i i

i
x N x

=

= ∑ , 
2

1
i i

i
u N u

=

= ∑        (4.2.3) 

( )1 2
1 1, 1 1

2 2
N Nξ ξ ξ− +

= = − ≤ ≤       (4.2.4) 

 

The nodal displacement can be related to strain by iB , as shown in Eq. (4.2.5). 

 
2

1
i i

i=
= ∑ε B u         (4.2.5) 

 

The iB  matrix is the derivative of the shape functions, expressed in Eq. (4.2.6) as, 

 

i
i

N
x

∂ =  
∂ 

B           (4.2.6) 

 
The element stiffness matrix related to the axial deformation can be expressed using the 

iB  matrix as follows:  

 

e

T
ij i jL

dL= ∫K B DB ,  { }A E=D         (4.2.7) 

 
where,  

A  : Cross sectional area 

eL  : Element length 

 
Rearranging Eq. (4.2.7), the stiffness matrix of a truss element can be calculated as, 
 

1 1
1 1e

EA
L

− 
=  − 

K         (4.2.8) 
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4.2.5 Internal Element Results  
 
The analysis results of truss elements are element internal forces, stresses and strains at 
Nodes I and J in the element coordinate system. 
 

I - end

ECS x-axis

,x xxN σ

,x xxN σ

J - end

 
 

Figure 4.2.2 Output locations and results for truss elements 
 
 
 
4.2.5.1 Element Member Force Results  
 

 

The element force result is the axial force, ( )x xxN Aσ= . The sign convention is shown in 

Figure 4.2.2 where a positive (+) stress is in tension.  The element internal forces at both 
ends are generally equal unless selfweight is assigned.  
 

 Fx ( )xN  : Axial force in the ECS x  direction  

 
 
4.2.5.2 Element Stress and Strain Results  

 
The element stress and strain are constant along the length since the truss element is a 2-
node element and the shape functions are assumed to be linear.  Therefore, the stress 
and strain at a specific point can represent the stress and strain values of the entire 
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element.  The axial stress, xxσ , total axial strain, xxε , and depending on the material 

type plastic axial strain, p
xxε  can be generated.  

  

 Sx ( )xxσ  : Axial stress in the ECS x -direction   

     Ex ( )xxε  : Total axial strain in the ECS x -direction   

PE ( )p
xxε  : Total axial plastic strain in the ECS x -direction 
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4.3 Embedded Truss Element  
 
4.3.1 Overview  
 
An embedded truss element is used for the elements with the bending behavior neglected, 
such as an anchor, nail and rockbolt.  The input data (element shape, element coordinate 
system, material properties, etc.) are identical to those for the truss element.  In addition, 
tension only and compression only behaviors having an allowable load with a hook distance 
or a gap distance and nonlinear elastic properties can be assigned to an embedded truss 
element. 
 
The nodes of a truss element always must be coincident with the nodes of adjoining 
elements such as 2D plain strain elements.  The embedded truss element, on the other 
hand, need not have coincident nodes with the nodes of adjoining elements as long as the 
element is in contact with ground elements such as plain strain elements or tunnel elements 
such as beam elements. 
 
 
4.3.2 Finite Element Formulation  
 
Mother elements representing the ground, which can be used with embedded truss 
elements are plain strain elements as follows:  
 
Plane strain element  

 3-node/6-node triangular element  
 4-node/8-node quadrilateral element  
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X

Z

 
 

Figure 4.3.1. Embedded truss element in mother elements 
 
 
 
An embedded truss element is always placed within the mother elements as shown in 
Figure 4.3.1.  The equations for the embedded truss element use a subscript “tru”, and the 
mother elements use a subscript “mot.”  
 
In the element coordinate system of the mother elements, u and v are the translational 
displacements in the local x and y directions respectively.  
 

{ },i i i
mot mot motu v=u       (4.3.1) 

 
The matrix of axis transformation between the mother and truss elements is obtained from 
the directional vector, d . 
 

1 2

1 2

0 0
0 0
d d

d d
 

=  
 

T      (4.3.2) 

 
Since a truss is a one-dimensional element, the transformation matrix can comprise only of 
the directional vector in the element local x-axis.  
 

{ }1 2,d d=d       (4.3.3) 

 
The nodal coordinates of a truss element can be defined in the isoparametric coordinate 
system of the mother elements as follows: 
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{ },i i i
tru ξ η=a       (4.3.4) 

 
Accordingly, the translational displacements of the truss element are given in the mother 
element coordinate system as follows:  
 

( )

( )
1

1

,

,

mot

mot

N
i i i i

tru mot mot
i

N
i i i i

tru mot mot
i

u N u

v N v

ξ η

ξ η

=

=

=

=

∑

∑
     (4.3.5) 

 
The translational displacements of the truss element in the truss element coordinate system 
can be obtained from the transformation matrix. 
 

ˆ tru tru= ⋅u T u       (4.3.6) 

 

The relationship between the nodal displacements, ˆ truu  and strains, truε  can be 

expressed by the strain-displacement relationship matrix, i
truB  as follows:  

 

∑
=

=
truN

i

i
tru

i
trutru

1

ˆ uBε       (4.3.7) 

 

The i
truB  matrix is the derivative of the shape functions, which is expressed as, 

 

i tru
tru

tru

N
x

 ∂
=  ∂ 

B       (4.3.8) 

 
The stiffness matrix of the embedded truss element is given as,  
 

( ) ( )
tru

T
ij tru mot tru mot truL

dL= ∫K B TN D B TN ,   [ ]A E=D   (4.3.9) 

 

where, A  is the cross sectional area, and truL  is the length of the truss element.  
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4.3.3 Internal Element Results  
 
The analysis results of truss elements are element internal forces, stresses and strains at 
Nodes I and J in the element coordinate system. 
 

I - end

J - end

xxσ

xxσ

ECS x-axis

X

Z

 
 

Figure 4.3.2 Output locations and results for embedded truss elements 
 
 
 
4.3.3.1 Element Member Force Results  
 

The element force result is the axial force, ( )x xxN Aσ= . The sign convention is shown in 

Figure 4.3.2 where a positive (+) stress is in tension. The element internal forces at both 
ends are generally equal unless selfweight is assigned.  
 

 Fx ( )xN  : Axial force in the ECS x -direction  

 
 
4.3.3.2 Element Stress and Strain Results  

 
The element stress and strain are constant along the length since the truss element is a 2-
node element and the shape functions are assumed to be linear.  Therefore, the stress 
and strain at a specific point can represent the stress and strain values of the entire 

element. The axial stress, xxσ , total axial strain, xxε , and depending on the material type 

plastic axial strain, p
xxε  can be generated. 
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Sx ( )xxσ  : Axial stress in the ECS x -direction 

Ex ( )xxε   : Total axial strain in the ECS x -direction  

PEx ( )p
xxε : Total axial plastic strain in the ECS x -direction  
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4.4 Beam Element 
 
4.4.1 Overview 
 
A beam element is a structural element, which is mainly used to model a long member 
relative to the section dimensions and is subjected to bending.  Beam elements are mostly 
used for modeling structural members.  In geotechnical engineering, beam elements can 
be used to model underground structures such as retaining walls, piles, tunnel lining, 
culverts etc.  Since a beam element retains 6 degrees of freedom at a node, the element 
can be used as a load-transfer element connecting other elements having different degrees 
of freedom. 
 
The beam element is formulated on the basis of the Timoshenko beam theory (the cross 
sectional plane initially normal to the neutral axis of the beam remains plane after 
deformation but not necessarily normal to the neutral axis in the deformed state), and shear 
deformations are taken into account.  When zero is entered for shear areas, the 
corresponding shear deformations of the beam element are ignored. 
 
If the aspect ratio of the section depth to the length is greater than 1/5, shear deformations 
becomes significant.  In such a case, it is recommended that fine mesh consisted of plane 
strain elements of elastic material properties be used. 

 
The torsional resistance of a beam element differs from the sectional polar moment of 
inertia (they are the same for circular and cylindrical sections).  Caution should be 
exercised when the effects of torsional deformation are large since the torsional resistance 
is generally determined by experimental methods. 
 
When elements with different DOF adjoin one another, the use of rigid beam elements is 
effective.  In order to avoid numerical errors, the stiffness of the rigid beam elements is 
generally set to 105~108 times the stiffness of the adjoining elements. 
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4.4.2 Element Shape, ECS & Degrees of Freedom  
 
The beam element retains three translational and three rotational degrees of freedom per 
each node in the element coordinate system.  The local x-axis is defined in the direction 
from Node i to Node j.  The local z-axis is defined in the direction of the global Z-axis.  
The local y-axis is defined using the right hand rule.  If the element x-axis is parallel with 
the global Z-axis, the local y-axis is defined in the direction parallel with the global Y-axis, 
and the local z-axis is defined using the right hand rule.  
 

X

Z

GCS

y

z

Z x
y

ˆy Z xe e e= ×
xe

ˆZe

xe
ye

z z ye e e= ×

x

Z x

element

i - end

j - end

determination of 
local y-direction

determination of 
local z-direction

 

 
   Figure 4.4.1 Definition of Beam Element Coordinate System 
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4.4.3 Element Material Properties  
 
A beam element being a structural element, its linear elastic material properties are defined 
as follows: 
 

Modulus of Elasticity  : E  

Poisson’s Ratio   : ν  

Weight Density   : tγ  

Thermal Coefficient   : α  
 

The structural properties of a beam element are a cross sectional area and spacing.  
SoilWorks’ Section Library supports various shapes. Simply entering the section dimensions 
will automatically calculate the section properties listed below.  
 

Cross section area   : A  

Torsional constant    : xI  

Moment of inertia about local y-axis  : yI  

Moment of inertia about local z-axis  : zI  

Effective shear area for local y-axis  : yA  

Effective shear area for local z-axis  : zA  

 
The spacing feature is identical to that of the truss element. 

 
 
4.4.4 Finite Element Formulation 
 
The beam element in SoilWorks is formulated on the basis of the Timoshenko beam theory, 
which renders the stiffness for tension, compression, shear, bending and torsion. 

 
For the sake of convenience, the finite element formulation of the beam element is 
explained for the 2-dimensional behavior on the X-Z plane. 
 
The deformation of a beam element is independently assumed as follows: 
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 ( ) ( )   and   yu z x w w xβ= =      (4.4.1) 

 
where, 

u  : Displacement in the x direction 
z  : Coordinate in the z direction  

yβ  : Angle of rotation about y-axis  
w  : Displacement in the z direction 

 
The strain and curvature are expressed as, 
 

 

y
b x y

s xz y

u z z
x x
w
x

β
ε ε κ

γ γ β

∂∂
= = = =

∂ ∂
∂

= = +
∂

          (4.4.2) 

 
where, 

bε   : Axial strain due to bending 

sγ   : Shear strain 

yκ   : Curvature about y-axis 

 
The moment - curvature relationship and the shear force - shear strain relationship are as 
follows: 
 

 
y

y b y

y s xz s xz

M D EI
x

V D GA

β
κ

γ γ

∂
= =

∂
= =

            (4.4.3) 

 
where, 

bD   : Bending stiffness 

sD   : Shear stiffness 

E   : Modulus of elasticity 
I   : Moment of inertia 
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G   : Shear modulus 

sA   : Shear area 

 
The shape functions of a 2-node beam element are assumed as follows: 
 

1 1 2 2 3 3

2
1 2 3

1 1,    ,    1
2 2

y y y yN N N

N N N

β β β β

ξ ξ ξ

= + + ∆

− +
= = = −

           (4.4.4) 

 
Using the shape functions in Eq. (4.4.4), the curvature in Eq. (4.4.2) can be redefined as,  
 

 

31 2
1 2 3

1 31 2
1 2 3

1

11 1 31 2
3

2

2

3

0 0

y y y y

y y y

y
y

y

b b y

NN N
x x x

NN NJ

w
NN NJ J

w

Bβ β

κ β β β

β β β
ξ ξ ξ

β
β

ξ ξ ξ
β

β

−

− −

∆

∂∂ ∂
= + + ∆

∂ ∂ ∂
∂ ∂ ∂

= + + ∆ ∂ ∂ ∂ 
 
 

∂ ∂ ∂  = + ∆  ∂ ∂ ∂   
  

= + ∆B u

         (4.4.5) 

 
where,  

2
x lJ
ξ
∂

= =
∂

(Jacobian operator) 

 
Also the shear strain field is calculated as follows: 
 

 
2

2

1y y yb
xz

s s s

V M D
D D x D x

β
γ

∂ ∂
= = =

∂ ∂
           (4.4.6) 

 

The angle of rotation, yβ , is now assumed as a second order polynomial equation of the 

element length. 
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 1 2 31 4 1y y y y
x x x x
l l l l

β β β β   = − + + − ∆   
   

           (4.4.7) 

 
By substituting Eq. (4.4.7) into Eq. (4.4.6), the shear strain field becomes as follows: 
 

 3 3 3 3 2 2

2 12 12,    
3

b
xz s y y

s s

D EIB
D l GA lβγ β φ β φ∆= ∆ = − ∆ = =           (4.4.8) 

 
However, the shear strain field must satisfy the following constraint condition: 
 

 ( )
0

0
l

xz xz dxγ γ− =∫            (4.4.9) 

 
Therefore, the conditional Eq. (4.4.10) can be established. 
 

 ( )2 1 1 2 3 3
2 1 0

2 2 3y y y
l lw w lβ β φ β− + + + + ∆ =            (4.4.10) 

 
Now, the virtual angle of rotation at the center can be expressed in terms of the remaining 
nodal angles of rotation. 
 

 
( )

( )

1

1
3

2
3

2

1

3

1 1 1
2 2 21
3

2 1 ,    1 1
3 2 2

y
y

y

w

w

w

l l
wl

l lA l

β

β β

β
β

φ
β

φ

−
∆

∆ ∆

 
 
  ∆ = = − − −      +
  

=

 = = + = − − −  

Au

A A A

A A

          (4.4.11) 

 
From Eq. (4.4.5) and Eq. (4.4.8), the curvature and the shear strain field can be expressed 
as, 
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( )

( )
y b b b b b

xz s s s

B B

B

β β β β

β β

κ

γ

∆ ∆

∆ ∆

= + = + =

= = =

B u Au B A u B u

Au B A u B u
           (4.4.12) 

 
where, 

bB   : Curvature-Displacement matrix 

sB   : Shear strain field - Displacement matrix 

 
 
The stiffness matrix is expressed as follows: 
 

 
0 0

,    

b s
l lT T

b b b b s s s sD dx D dx

= +

= =∫ ∫

K K K

K B B K B B
           (4.4.13) 

 
The above integration can be algebraically calculated, and the final beam stiffness is as 
follows: 
 

 

3 2 3 2

3 3
2

3
3 2

3

12 6 12 6

4 6 21 1
4 2

12 61

4Sym. 1
4

l l l l

l llEI

l l

l

φ φ

φ

φ

 − − − 
 

    + −        =
+  

 
 

  +     

K           (4.4.14) 

 
The above formulation of a beam element is based on the element coordinate system 
coinciding with the x, y & z axes. Therefore, it is necessary to transform the matrix into the 
global coordinate system prior to combining the stiffness matrices. 
 
 
 
 
 

http://endic.naver.com/enkrEntry.nhn?entryId=fd70e4c603724fc0b615c8faea766ab3&query=%EB%8C%80%EC%88%98%ED%95%99%EC%A0%81�
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4.4.5 Internal Element Results 
 
The analysis results of beam elements are the element member forces and cross sectional 
stresses. 
 
 
4.4.5.1 Element Member Force Results  
 

The sign convention for the element internal forces is given in Figure 4.4.2. The arrow 
directions represent the positive (+) directions.  
 

Nx  : Axial force in the ECS x-axis direction 
Qy, Qz  : Shear forces in the ECS y-axis & z-axis directions 
Mx  : Torsional moment about the ECS x-axis 
My, Mz  : Bending moments about the ECS y-axis & z-axis 

 

node 1 node 21/4pt 1/2pt 3/4pt ECS x-axis

ECS z-axis

xN

zQ

yM

zQ

yM

xN

 
 

Figure  4.4.2 Element coordinate system of beam element and the sign convention  
for element internal forces and stresses 

 
 
 
4.4.5.2 Element Stress Results 

 
The sign convention for the internal stresses, except for the bending moment stresses, is 
the same as for the internal forces. The bending moment stresses are positive (+) for 
tension and negative (-) for compression. The stresses are produced at the outer-most 
fibers 1, 2, 3 and 4 as shown in Figure 4.4.3 (a). The normal stresses acting on the cross 
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section of a beam are expressed as the combination of the bending and axial stresses as 
shown in Figure 4.4.3 (b). The shear stress in each direction is the average of the stresses 
across the section as shown in Figure 4.4.3 (c). 
 

 

 

(b) concept of combined bending and axial stresses

 

x y

z

(c) shear stress

xzτ (average shear)

 

 
Figure 4.4.3 Beam element stresses  
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Fx   : Axial force  
Fz   : Shear stress in the ECS z-axis direction 
My   : Bending moment about ECS y-axis 

 Sax   : Axial stress in the ECS x-axis direction ( )xxσ  

  Ssz   : Shear stress in the ECS z-axis direction ( )xzτ  

Bending Sbz+  : Positive stress due to bending moment ( )yM  about the ECS  

                    y-axis [location 2] 

Bending Sbz-  : Negative stress due to bending moment ( )yM  about the ECS  

       y-axis [location 1] 
Combined Max  : Maximum & Minimum combined stresses among the combined  
         stresses at 1, 2, 3 and 4 

Combined 1  : Combined stress at 1 (axial stress + bending stress) 
Combined 2  : Combined stress at 2 (axial stress + bending stress) 
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4.5 Interface Element 
 
4.5.1 Overview  
 
SoilWorks uses the interface element proposed by Goodman et al. to allow slippage 
between dissimilar materials or between elements having a significant difference in stiffness.  
 
This type of modeling is possible by using general isoparametric elements with the selection 
of appropriate stiffness.  However, the interface element enables the user to use a thin 
element without having to discretize the mesh.  
 
The shear stress at the interface element is limited by the shear strength at the interface 
defined by the user.  The yield criterion of the Coulomb friction is used to set the shear 
strength of the interface.  If the shear stress exceeds the maximum shear strength, plastic 
flow takes place on the basis of the plastic theory. 
 
Also, the presence of tensile stress in the interface element is checked.  When the 
interface element is subjected to tension, the normal and shear stiffness are set to zero, and 
the interface is assumed to be incapable of resisting external forces simulating discontinuity.  
 
The nodal coordinates of the interface element are the same for the two rows of nodes 
along the length dimension of the element.  The number of degrees of freedom is identical 
to that of the plane elements connected at each node. 
 
The interface element follows the general finite element formulation, but with the element 
thickness being equal to zero.  When defining the interface element of zero thickness 
numerically, the penalty stiffness rule is applied.  Large penalty stiffness may result in 
numerical instability, whereas very small penalty stiffness can produce inaccurate relative 
displacements of the interface element.  Thus, an appropriate penalty stiffness value is 
required.  SoilWorks recommends a penalty stiffness value of k = 10 x E/dv in which E is 

the smallest Young’s modulus among the elements in the model, and vd  is the nonzero 

virtual thickness of the element.  The nonzero virtual thickness of the element used to 
define the penalty stiffness generally ranges from 0.1 to 1.  The nonzero thickness of the 
element is not the real thickness, but is used in the concept of a scale factor to control the 
unit and magnitude of the penalty stiffness.  The reason for this is that the unit for the 
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elastic modulus is 2/N m , while the unit for the penalty stiffness is 3/N m .  

For the purpose of numerical analysis, the relationship between the relative displacement, 

∆u and the traction, t, on the basis of the penalty rule can be defined as the constitutive 
equation, Eq. (4.5.1). 
 

= ⋅ ∆t D u        (4.5.1) 
 
t , D  and ∆u  are defined below, and the relative displacement and the traction force at 
an integration point are illustrated in Figure 4.5.1. 
 

x

y

t
t
  =  
  

t , 
0

0
x

y

k
k

 
=  
 

D , x

y

u
u

∆  ∆ =  ∆  
u     (4.5.2) 

 

              
yu∆

xu∆

yt

xt

 
 

                            (a) Relative Displacement                      (b) Traction Force 
   

Figure 4.5.1 : Relative displacement and traction force on a linear interface element  
 
 
where,  

Dotted line : Interface  

xt  : Normal traction [ 2/N m ] 

yt  : Tangential traction [ 2/N m ] 

xu∆   : Relative displacement in the normal direction [ m ] 

yu∆   : Relative displacement in the tangential direction [ m ] 

 
The relative displacement and the traction in Eq. (4.5.2) do not have any directional 
relationship.  For example, the normal traction does not influence the tangential traction 
and vice versa.  
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4.5.2 ECS, Element Shape & Degrees of Freedom  
 
SoilWorks provides linear interface elements of low order 4-node and high order 6-node 
elements as shown in Figure 4.5.3.  The linear interface elements are used to describe 
opening/closing and sliding motions between plane elements or between plane and line 
elements. 
 

 
 

Figure 4.5.3 Linear Interface Elements 
 
 
 
4.5.3 Element Properties  
 
For the structural property of a linear interface element, a unit thickness of 1 is used in 
addition to the following stiffness coefficients: 
 

xk   : Stiffness coefficient in the ECS x-axis direction (in normal direction) 

yk   : Stiffness coefficient in the ECS y-axis direction (in tangential direction) 

 
 
4.5.4 Finite Element Formulation  
 

The tractions in ECS can be derived from the relative displacements in ECS, xΔu  and 

yΔu  and the stiffness matrix D . 
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x x

y y

t u
t u

∆      =   ∆      
D        (4.5.3) 

 
The stiffness matrix can be obtained from the strain energy equation of an interface element 
by a variational method: 

 
 

T
inter inter interdΓ

= Γ∫K B DB       (4.5.4) 

 
In addition, the internal force can be expressed as, 
 

T
inter inter d

Γ
= Γ∫F B t        (4.5.5) 

 
Expanding Eq. (4.5.4) and Eq. (4.5.5) into the form of numerical integration, the following 
stiffness matrix, Eq. (4.5.4) and the force matrix, (4.5.5) can be expressed. 

 

1
det

ipN
j T j j j

inter inter inter
j=

= ∑K B DB J W      (4.5.6) 

1
det

ipN
j j j

inter inter
j=

= ∑F B t J W       (4.5.7) 

 
where, 

ipN   : Number of integration points for the interface element 

interB  : Matrix of the relationship between the relative displacement and  

    element displacement at the time of calculating the internal force  
 
The constitutive relationship of the linear interface element defining the stiffness matrix, D  
is identical to Eq. (4.5.2). 

 
The global coordinates of a node of a linear interface element can be defined using the 
shape functions (Ni) below. 
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1 1 2 2 5 5

3 3 4 4 6 6

1 1 2 2 5 5

3 3 4 4 6 6

( )

( )

( )

( )

bot bot bot bot bot bot bot

top top top top top top top

bot bot bot bot bot bot bot

top top top top top top top

x N x N x N x

x N x N x N x

y N y N y N y

y N y N y N y

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

    (4.5.8) 

 
The coordinates in the parentheses above represent a higher order element. Also the total 
displacements at a node can be expressed as, 
 

1 1 2 2 5 5

3 3 4 4 6 6

1 1 2 2 5 5

3 3 4 4 6 6

( )

( )

( )

( )

bot bot bot bot bot bot bot

top top top top top top top

bot bot bot bot bot bot bot

top top top top top top top

u N u N u N u

u N u N u N u

v N v N v N v

v N v N v N v

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

    (4.5.9) 

 
The isoparametric shape functions for the linear interface element are expressed as Eq. 
(4.5.10). 
 

( ) ( ) ( )

( ) ( ) ( )

1 3

2 4

1 1
2
1 1
2

bot top

bot top

N N

N N

ξ ξ ξ

ξ ξ ξ

= = −

= = +
     (4.5.10) 

 
For the higher order interface element, 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 3

2 4

5 6

2

1 1
2

1 1
2
1

bot top

bot top

bot top

N N

N N

N N

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

= = − −

= = +

= = −

    (4.5.11) 

 (Nodes 5 and 6 are higher order nodes of the linear interface element.) 
 
 
The integration points are placed at the interface in between the top and bottom elements in 
SoilWorks.  Since the Newton-Cotes integration method is used, the integration points 
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exist at the nodes.  
If the Gauss integration method is used for interface elements, the integration points are 
located within the elements.  This leads to inability to accurately simulate the nodal 
behavior of the interface, and the result tends to oscillate.  Therefore, the Newton-Cotes 
method is used to accurately simulate the behavior. 
 
 
4.5.5 Internal Element Results  
 
The results of interface elements are tractions, relative displacements and plastic relative 
displacements as follows: 
 

 Tractions 
  xt  : Traction in the ECS x-axis direction (in normal direction) 

            yt   : Traction in the ECS y-axis direction (in tangential direction) 

 
 Relative Displacements 

xu∆   : Relative displacement in the ECS x-axis direction  

                     (in normal direction) 

yu∆   : Relative displacement in the ECS y-axis direction  

                     (in tangential direction) 
p
xu∆   : Plastic relative displacement in the ECS x-axis direction  

                     (in normal direction) 
p
yu∆   : Plastic relative displacement in the ECS y-axis direction  

                     (in tangential direction) 
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4.6 Pile/Anchor/Nail/Rockbolt Elements 
 
4.6.1 Overview 
 
The pile element in SoilWorks is convenient to model a pile-soil interface because 
coincident nodal connectivity is no longer required.  The pile element is created with a 
beam element embedded in the mother (ground) elements.  Furthermore, linear interface 
elements are inserted in between the beam element nodes and the virtual nodes embedded 
in the ground elements to simulate the nonlinear behavior such as frictional slip between the 
pile and soil.  
 
This element can be also used for anchors, nails and rockbolts.  The difference between 
the general pile and anchor/nail/rockbolt elements is that only the material behaviors 
defined at the interfaces simply exist.  In order to avoid the complexity of terminology, the 
elements will be referred to as pile elements hereafter. 
 
The pile element in SoilWorks refers to a linear interface element, which inter-links the 
motions between the beam element and the ground as shown in Figure 4.6.1.  
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Figure 4.6.1 Pile element 
 
 
 

4.6.2 Element Shape, ECS & Degrees of Freedom  
 
The pile element is a special form of a linear interface element, which is created between 
the real nodes of a beam element and the virtual nodes of a soil element as shown in Figure 
4.6.1.  SoilWorks supports the 4-node low order linear interface element consisted of the 
two real and two virtual nodes. 
 
The element local x-axis is defined in the direction from the i-end to j-end as shown in 
Figure 4.6.2.  The ECS y-axis is defined in the direction of the global Z-axis from the ECS 
x-axis.  The z-axis is defined using the right hand rule. If the element x-axis is parallel with 
the global Z-axis, the element y-axis is defined in the direction parallel with the global X-axis, 
and the element z-axis is defined using the right hand rule. The element DOF is given in 
Figure. 4.6.2.   
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Figure 4.6.2 Coordinate System of Pile Element 
 
 
 
4.6.3 Element Properties  
 
In case a rigid body behavior is assumed for the pile element, the following material 
properties are required: 
 

xk   : Stiffness coefficient in the ECS x-axis direction (in normal direction) 

yk   : Stiffness coefficient in the ECS y-axis direction (in tangential direction) 

 
Apart from the rigid body behavior, strength and stiffness can be assigned to vary with 
depth in the behavior of a pile element.  Refer to the Material manual for details.  
 
 
4.6.4 Finite Element Formulation 
 
The pile elements can be embedded in the following low/high order plane strain elements: 
 

 3-node/6-node triangular elements  
 4-node/8-node rectangular elements  

 
Pile elements can be modeled with the following linear elements: 

 
 2-node truss elements  
 2-node beam elements  
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The global coordinate system for interface elements is as follows:  
 

 { }X Z=X              (4.6.1) 

 
The element local coordinate system for interface elements can be defined using the global 
coordinate system as follows: 
 

 ( ) ( ){ }1 1 1 2 2 2, ,x X Z x X Z=x      (4.6.2) 

 
 

 
 

        Figure: 4.3.3 Types of Interface Elements between Soil and Linear Elements  
 
 
The global coordinate system can be expressed as,  
 
 IX =               (4.6.3) 
 
The local coordinate system can be represented in terms of an orthogonal matrix as,  
 



 

 
SoilWorks 

 
85 

Chapter 4 Finite Elements 

 
1 1
1 2
2 2

1 2

X X
X X
 

=  
 

x               (4.6.4) 

 
The nodal coordinates can be represented in the local coordinate system as follows: 
 

 
( ) ( ){ }

( ) ( ){ }

1 1 2 2
1 1 2 2 1 2

1 1
1 1 2 21 2

1 1 2 2 1 22 2
1 2

, ,

, ,
T

x x x x x x

X X
x X X x X X

X X

=

 
=  
 

x

    (4.6.5) 

 
The first order shape function can be represented and written as follows:  
 

 
 

      Figure 4.6.4 First Order Shape Function Representation 
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      (4.6.6) 

 

The shape functions at a Gauss integration point is denoted by l
kN , where k  represents 

the node number, and l  represents the integration point number.  If there are two 

integration points, 1,2l = .  The nodal coordinates can be expressed as k
ia , k  being the 

node number and l  being the number representing a degree of freedom.  In case of a 
plane strain element, two translational degrees of freedom are used.  
 

 
3 3

1 2
1 1

,l k l k l
k k

k k
a N a N

= =

 
=  
 
∑ ∑a              (4.6.7) 

 
la  is the coordinate of the Gauss integration point of a linear element in the element 

coordinate system.  Since the coordinate of the integration point of a linear element is 
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known in the isoparametric coordinate system of a plane strain element, the coordinate 
system of the integration point of the linear element can be found in the element coordinate 
system of the plane strain element using the nodal coordinate of the plane strain element.  
 
The coordinates in the isoparametric coordinate system are given by, 
 

 { },l l lξ η=α               (4.6.8) 

 
If the base element is a 6-node triangular element, the shape function can be defined by, 
 

 6 l
kN                (4.3.8) 

 
k  represents the index of the shape function, and l  represents the index of the 
integration point.  If a 2-node pile element passes through a 6-node triangular element, the 
relative displacement-displacement matrix can be formulated as follows:  
 

6 6
1 6 1 2

6 6
1 6 1 2

0 0 0 0
0 0 0 0

l l l l
l

l l l l

N N N N
N N N N

 − −
=  − − 

B



  (4.3.9) 

 
The gradient stiffness matrix of a plane strain-beam interface element is expressed as 
below.  

 

 ∑
=

=
np

l
ll

lTl
t W

1
det JTBBK             (4.3.11) 

 
where, tK is the gradient stiffness, lW  is the weight and T is the relative displacement-
friction matrix. 
 
The types of material models used for pile elements include Linear Elastic Model and 
Nonlinear Elastic Model.  The Relative Displacement-Friction relationship matrix is 
formulated as follows:  
 

 
0

0
x

y

k
k

 
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D              (4.3.12) 
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The normal stress (σ ) and shear stress (τ ) are associated with a constitutive equation for 
the normal strain and tangent strain.  In case of a 3D structure, one normal strain and two 
tangent strains constitute the relationship. 
 

 
x x

y y

z z

t u
t u
t u

∆   
   = ∆   
   ∆   

D               (4.3.13) 

 
 
4.6.5 Internal Element Results  
 
The analysis results of pile elements are traction and relative displacement at the interface.   
 

xt   : Traction in the ECS x-axis direction  

yt   : Traction in the ECS y-axis direction  

xu∆   : Relative displacement in the ECS x-axis direction  

yu∆   : Relative displacement in the ECS y-axis direction  
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4.7 Pile Tip Bearing Element 
 
4.7.1 Overview  
 
The pile element was introduced on the basis of a linear element-soil interface in the 
preceding section.  The pile element is complemented by adding a point-to-soil interface 
element at the pile tip.  Figure 4.7.1 illustrates how a pile tip bearing is modeled in 
SoilWorks defining a point-to-soil interface in an element. 
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Figure 4.7.1 Conceptual composition of pile tip bearing element 
 
 
 
4.7.2 Elements Shape, ECS & Degrees of Freedom  
 
As shown in Figure 4.7.2, the pile tip bearing element can be used in 4-node and 8-node 
quadrilateral elements and 3-node and 6-node triangular elements. 
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      Figure 4.7.2 Pile tip bearing element used in various types of soil elements 
 
 
Figure 4.7.3 illustrates the element coordinate system of a pile tip bearing element.  The 
element local x-axis is defined in the axial direction of a beam or truss element, and the 
element local y-axis is defined in the direction normal to the local x-axis.  
 

y
xx

 
 

4.7.3 Coordinate System of Pile tip bearing element  
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4.7.3 Element Properties  
 
In case a rigid body behavior is assumed for a pile tip bearing element, the following 
material properties are required: 
 

xk   : Stiffness coefficient in the ECS x-axis direction  

yk   : Stiffness coefficient in the ECS y-axis direction  

 
Apart from the rigid body behavior of a pile tip bearing element, a strength degradation 
curve can be defined in SoilWorks. Refer to the Material manual for details.    
 
 
4.7.4 Finite Element Formulation  
 
The formulation for a pile tip bearing element is similar to that for a point interface element, 
and the pile tip bearing element is defined as a point interface element between a mother 
element and a point element.  For the sake of convenience in the formulation, the mother 
element is assumed to be a two-dimensional element.  
 
In order to define the translational displacement of the pile tip bearing element, the 

displacement of the mother element, i
motu  and the displacement of the point element, i

ptu  

need to be first defined.  
 

{ }
{ }

,

,

i i i
mot mot mot

i i i
pt pt pt

u v

u v

=

=

u

u
      (4.7.1) 

 
Since the axial transformation matrix of the pile tip element is one-dimensional, the same 
transformation matrix of the pile element is used for convenience without the user’s input.  
 

tip pile=T T        (4.7.2) 

 
The nodal coordinates of the pile tip element can be defined in the isoparametric coordinate 
system of the mother element as expressed in Eq. (4.7.3) and shown in Figure 4.7.4. 
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{ },i i i
tip iso isoξ η=a       (4.7.3) 

 

ξ

η

( ),iso isoξ η pile tip bearing element
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element

: node point in isoparametric 
coordinate of mother element  

 
Figure 4.7.4: Nodal coordinates of a pile tip bearing element  
in the isoparametric coordinate system of a mother element  

 
 
The shape function of a pile tip can be expressed by the difference between the shape 
function of the mother element and the shape function of the point element at the location of 
the pile tip.  
 

( ) ( ), ,i i i i i i
tip mot iso iso pt ptN Nξ η ξ = − N     (4.7.4) 

 
The relative displacement of a pile tip element in the mother element coordinate system can 
be written as, 
 

{ },
Ti i i

tip tip mot pt∆ = ⋅u N u u      (4.7.5) 

 
The relative displacement in the pile tip element coordinate system can be obtained from 
the transformation matrix.  
 

ˆ tip tip tip∆ = ⋅ ∆u T u       (4.7.6) 

 
The stiffness matrix of a pile tip element can be expressed by the following equation:  
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( ) ( )
tip

T

ij tip tip tip tip tipV
dV= ⋅ ⋅∫K T N D T N     (4.7.7) 

 

D  is the constitutive matrix defined by the user-defined axial stiffness.  The pile tip 
bearing element is a 1D element while the mother element is a 2D element.  In order to 
match the dimension, the pile tip bearing element is defined in a 2X2 matrix in which the 
stiffness in non-axial directions is set to zero. 
 

0
0 0

nk 
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 

D       (4.7.8) 

 

The constitutive equation for the traction, tipt can be defined in terms of the relative 

displacement, tip∆u  as follows:  

 

{ } { }
ˆ ˆtip tip

x xt u
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= ∆

t D u

D
      (4.7.9) 

 
 

4.7.5 Internal Element Results 
 
The results of pile tip elements are tractions and relative displacements at the interface. 
 

xt    : Traction in the ECS x-axis direction  

yt    : Traction in the ECS y-axis direction  

xu∆   : Relative displacement in the ECS x-axis direction  

yu∆   : Relative displacement in the ECS y-axis direction  
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4.8 Geogrid Element 
 
Geogrid materials are high polymers used in the environment of sands, soils, gravels, etc., 
which are closely related to geotechnical engineering works.  They were initially used to 
prevent soil erosion and for filtering and subsequently used to separate, reinforce or drain 
soils.  Recently they have been also used for waterproofing, preventing fissures, protecting 
underground structures and absorbing impact.  
 
Geogrid structures are thin and flat, which do not retain flexural stiffness but retain axial 
stiffness.  Geogrid structures cannot resist compression and can only resist tension.  
 
The geogrid element used on a plane is a 2-node low order linear element, which can be 
used in the same way as the truss element.  
 
Geogrid elements are represented as truss elements exhibiting the tension-only behavior.   
Since a unit width is assumed for the geometrical property of the truss element, only the 
thickness data is required. 
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4.9 Elastic Link 
 
An elastic link element connects two nodes retaining the stiffness defined by the user 
without any physical properties.  Figure 4.9.1 presents the direction of the ECS x-axis. An 
elastic link may be assigned tension-only or compression-only in which case only the 
stiffness in the ECS x-axis direction is accounted for.  The element consists of two 
translational and one rotational stiffness parameters.  The translational stiffness and 
rotational stiffness of an elastic link element are expressed in terms of force per unit length 
and moment per unit radian respectively.  
 
The use of elastic link elements includes elastic bearings of a bridge structure connecting 
the bridge deck and the piers or soil boundary conditions retaining a compression-only 
characteristic.  Upon selecting the rigid type option, the elastic link rigidly connects two 
nodes as the rigid link.  
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    Figure 4.9.1 Coordinate system of an Elastic Link 
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4.10 Rigid Link 
 
The rigid link element constrains relative geometric displacements or rotations between 2 or 
more nodes in a structure.  A geometric constraint is prescribed to one or more degrees of 
freedom, which are subordinated to the degrees of freedom of a particular node.  The 
particular reference node is called the master node, and the subordinated nodes are called 
the slave nodes.  The inter-constraint of the master node and a slave node by a rigid link is 
expressed in Eq. (4.10.1). 
 

Xs Xm

Zs Zm

Ys Ym

U U
U U
R R

=
=
=

      (4.10.1) 

 
where,  

,Xs ZsU U  : Translations of slave node in the GCS X and Z directions 

,Xm ZmU U  : Translations of master node in the GCS X and Z directions 

   YsR   : Rotation of slave node about the GCS Y direction 

  YmR   : Rotation of master node about the GCS Y direction 

 
The fact that a rigid link element interconnects the degrees of freedom between two nodes 
to simulate the continuous soil behavior, rigid link elements are used at a stage before an 
interface element becomes activated. 
 
The rigid link element always imposes the displacements of a slave node to coincide with 
those of the master node. 
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4.11 Point Spring/Damping 
 
Point springs are used to define the elastic stiffness of adjoining structures or ground 
support conditions.  Point springs are also used to prevent singular errors from occurring at 
the connecting nodes of elements with deficient degrees of freedom such as truss element, 
plane stress element, etc.  
 
A point spring at a node can be expressed in three degrees of freedom (two translational 
and one rotational components) in GCS as shown in Figure 4.11.1.  The translational 
stiffness and rotational stiffness are defined in terms of force per unit length and moment 
per unit radian respectively.  When modeling soils with point springs, the spring stiffness 
can be calculated by the product of the modulus of subgrade reaction and the effective area 
of the corresponding node.    
 
Point damping defines the spring damping of a node.  The point damping is widely used in 
modeling viscous damping boundary conditions of soils and can be defined in three degrees 
of freedom (two translational and one rotational components) per node.  Due to the 
characteristics of damping, the point damping can be used only in dynamic analysis, not in 
static analysis. 
 
GCS is basically used for defining the point spring and point damping, but NCS may be 
used if it has been already defined.     
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Figure 4.11.1 Coordinate System of Point Spring/Damping 
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