• One Stop Solution for Building and General Structures

midas **Gen**

Product Overview

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

midas **Gen**

- midas Gen is a Windows-based, general-purpose structural analysis and optimal design system.
- The intuitive User Interface, contemporary Computer Graphics and substantially fast solver speed are some of the highlights of midas Gen.
- The user-oriented input/output features and significant analysis capabilities enable the **practicing engineers** and researchers to readily undertake structural analysis and design for even **complex and large structures**.

Pushover Analysis Result

Inelastic Time History Results

Column Shortening Results

- Static Analysis
- Dynamic Analysis
- Pushover Analysis
- P-Delta Analysis
- Buckling Analysis
- Thermal Stress Analysis
- Moving Load Analysis
- Construction Stage Analysis (Time-dependent)
 - Creep, Shrinkage & Mod. of Elasticity
 - Tension losses in tendons
 - Column Shortening
 - Construction Stage Wizard
- Large Displacement Analysis (Cable structures)
- Boundary Nonlinear Dynamic Analysis
- Material Nonlinear Analysis
- Masonry Linear / Pushover Analysis
- Inelastic Time History Analysis (Fiber Elements)
- Heat of Hydration Analysis for mass concrete

	Reinforced Concrete Design Codes	Code Name
\dot{o}	Japanese Standard for Structural Calculation of Reinforced Concrete Structures	AIJ-WSD99
ň	American Building Code Requirements for Structural Concrete	ACI318-89 , 95, 99, 02
\mathbf{C}	British Design of Reinforced Concrete Buildings	BS8110-97
Ю	Eurocode 2: Design of concrete structures	EuroCode 2
te	Canadian Design of Concrete Structures	CSA-A23. 3-94
U	Chinese Code for Design of Concrete structures	GB50010-2
	Korean Code for Design of Concrete structures – 1	AIK-USD94
	Korean Code for Design of Concrete structures – 2	KCI-USD99
	Korean Code for Civil Design of Concrete structures – 3	KSCE-USD96
	Korean Code for Design of Concrete structures – 4(WDS2000)	AIK-WSD2K
	Korean Code for Design of Concrete structures – 5	KCI-USD03
	Indian Code for Design of Concrete structures	IS456:2000
	Taiwanese Code for Design of Concrete structures	TWN-USD92

S	Steel Design Codes	Code Name
te	Japanese Design Standard for Steel Structures	AIJ-ASD02
D	British Structural use of steelwork in building	BS5950-90
	Eurocode 3: Design of steel structures (LSD)	Eurocode 3
	American Cold-formed Steel Design	AISI-CFSD86
	American Design of steel structures (ASD)	AISC-ASD89
	American Load and Resistance Factor Design Specification	AISC-LRFD93/2K
	Korean Cold-formed Steel Design	AIK-CFSD98
	Korean Load and Resistance Factor Design Specification	AIK-LSD97
	Korean Design of steel structures (ASD)	AIK-ASD83

Graphic User Interface

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

midas **Gen**

Menus and Windows Layout

[midas Gen Framework]

Various Useful Functions and Windows

Martinet / Care					_	_			_					_		_
	ment in	at grant to	idt Smith	Math Query	-		-									201
Poplar, 1985	No. 1637013	Ver C. AD	aber and	No. Deres			-	100 0.00	-							
			100	12.00			1112	2								
O M M ×	£2+12+	03.41	1.4.75 50	1.0.0.1	in or in		11.0.0	ADDATES 1	** 2.0		15 1 1 1 1 1	A				
* . 🗳 maxi	an 4 1	nde Dana 🗸	Dervert Joint	4 3m m	age 4	-	ner d	Load laws		The Large	-	M				
Carlos Local	11					14									-	-
F Marda	Mar)	Wal	21e)			1.1	-				and a					
30	0.00888	13.808.000	1.00000			14	Chemeter	Tape		lub Type	- 0	Aderial	Coper N	Ideal)	del Mode	111
- 20	3-00000	13.80000	5-00000			н		PP61	Mert	trace.			700	1.00	15 1	5.14
377	3.00000	13.80000	5-000000				10421	APRIL	Marri	inana .	1		350	0.00	20 30	8 I -
- 20	5-00000	13.80000	150000			Н	125.1	ANL .	- Marrie	inging .	-				141 15	5115
45	0.000000	13.00000	14.000000													
40	2.000000	13.82200	14.00000		1.0	L.,	and a	-			-					1
and the second second	COLOR HOLD	YOUR YAR				100	Your Y	HE A CHE	L-11 X 10	a Area	A.P. (81.1.8).				-	i 1
·	_					۰.			_							
784	1000	108	1-14	Automatical States	in the st	1	Chery.	Lave	Tues	Pears.	Wandshalar	Fale	10.00	Sala	3.4	
		Der Fille	Charles I	-	140	5	-	-	141	Card Street	1241	And in case of	100	Contraction of the local division of the loc	TRAME OF	. 18
18-	8.891	1010108000	10.000	107104-0020	1.0	Ê	9	4.00	1004-000	1,000-000	128-00	1.000-0.0	1104-02	CORP.40	184-00	
H F	1.68	171,007 \$211	10.007	NILLAR N	83		9	36.000	1.894-01	1004-00	124-10	LIDe-10	£180a-63	101-00	4.008-002	11
	14.000	TRUE TRUE	THE COLUMN	1000.010	- 14	E	1	1.00	1.004-000	Links	Line-m	1.00m-10	1,014-02	1084-00	108-00	
	1000	10,0001001	101000-000	100001-000	-18		2	10,000	1004-00	1100-101	128-10	Long-St.	1.03-02	100410	Linite-OR	13
	0.000	1.1000000	1.0000000	1.000			2	10.000	10440		Line-m	Line-till	1,738-83	104-00	1.104-101	10
	COLUMN TWO IS NOT	CHINESE IN COLUMN		1.00	100	Þ	2	1.000	104-00	1.108-101	128-20	Line-tra	1204-02	1.00+00	1,218-121	11
394	141	1-24	-44				-	4.000	124-03	Awarda	Lab-Ini	4.000-01	1.063-03	1084-00	1.000-002	
	6.000	1.000000	1,000000			-			71,45	64.01	-	144	week.	1-1	1.4	
	4,000	1.000000	1.000000			H	-		1.00.0-000	1,808-001	1.04-10	1.000-000	1.000-000	1.00-00	10000	- 11
	14.000	1,0000000	1,380,000							_	-				1	1
Et. Story I	Hats A 8-01	R & Y-CR & Z-I		_		غلنا	Young a	accept / .							5.0	
🖉 Marina Docer	-					-			-				1.00	-	_	
84.04	Robelling Mar	Canad To Ma	et Decks	ant Sim a lavely	1 3		unit	(bel)	Cant	(set)	dard.	(here)	(hed)			
3		-	51	1100 14	5	12	A	1.004-00	COLUMN TWO IS NOT	11000	Long-to-	1.000				
		-		1.181 879	8			Centert		Fair	Paciet .	Sand Press	Lan.			
	5 1		10	LTRI AM	8	E	1	1,009-000	100100	A REPORT	1.00-00	4 10 4 1				-
-	5. ml	State Manual V		sam ter	110	- 11	A COMPANY	Link	Distant	0/					1.	£1.
CTGV#044	Martin, A. / A.	Street sectors.			-	4.75	1 10 28.271	1.27	0.56.2	1A.W.	Jud	1.	1000	(~~)		67.3
Por Help, press PS	_				-	-				1.	-					
										-						
										T	ah	10	11/	inr	101	A/C
										1	ub	IC.		in	101	v 3

Special Visualization Features

Data Exchange / Merge Data Files

- Direct Data Transfer with Tekla Structures, Revit Structure & STAAD
- Import/Export (AutoCAD DXF, MSC.Nastran, MGT, etc.)
- Merge Data Files
- Unlimited Undo/Redo & Step Return using History

Quick and Easiness Features

Unit Conversion

Length Force (Mass) Heat © m C N (kg) C G C mm C Kd (kg) C G C ft C kof (kg) C G C lbf (lb) C If C korse C lbf (lb) C Korse C korse Temperature C celsius C Fahrenheit	cal kcal I
Image: marked bit in the second sec	cal kcal I J
C cm C kN (ton) C is C mm C kgf (kg) C is C ft C ton (ton) C is C in C kjps (kjps/g) C is Temperature C clesius C Fahrenheit	kcal I J
C mm C kgf (kg) C kg C ft C tonf (ton) C kg C in C kgs (kjs)/g) C kg Temperature C elsius C Fahrenheit	ป เ
ft ft ft	, دا
C tt C lbf (lb) C i C in C kips (kips/g) C t Temperature C Celsius C Fahrenheit	4
C in C kips (kips/g) C € Temperature C Celsius C Fahrenheit	
Temperature © Celsius © Fahrenheit	3tu
units, Set/Change Default Unit System	
	_
OK WEAT CT	
	0.54

Unlimited Undo/Redo

Model Data Generation

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

midas **Gen**

Material Data Definition

erial Data						
ieneral						
Material ID	1		Name	A53		
lasticity Data						_
ype of Design	Steel	•	Steel	_		
Г			Standard	ASTM(S)	-]
			DB	A53	•	
			Concrete			
	-		Standard			1
Isotronic	0.0		DB	·		i II
				1		-
Steel Modulus of Electricit		4.1760a±006	kine (Nr.)			
Deicces's Datie		0.2	NDS/IC*			
Thermal Coefficient		6 5000+ 005				
Thermal Coefficien	¢ :	6.50008-005	1/IF1			
Weight Density		0.4908	kips/ft ^a			
Use Mass Dens	ity:	0.01525	kips/ft*/q			
Concrete						
Modulus of Elasticit	ty :	0.00008+000	kips/ft ²			
Poisson's Ratio	:	0				
Thermal Coefficien	k :	0.0000e+000	1/[F]			
Weight Density	:	0	kips/ft ³			
Use Mass Dens		0	kips/ft*/q			
Nasticity Data						
Plastic Material N	lame	NONE	•			
Thermal Transfer						
Specific Heat	:	0	Btu-q/kips-[F]			
Heat Conduction	:	0	Btu/ft-hr-[F]			
			ж	Cancel	Аррку	
			× 1			
						Stoo
					-	nee

Database	Code Name
BS	British Standards
ASTM	American Society for Testing Materials
EN	European Code
DIN	Deutshes Institut Fur Normung e.v
CSA	Canadian Standards Association
IS	Indian Standards
JIS	Japanese Industrial Standards
KS	Korean Industrial Standards
GB	Chinese National Standard
JGJ	Chinese Engineering Standard
ILI	Chinese Transportation Department Standard

*SRC and User Defined material properties can be defined

eel & Concrete Material Database

- Creep/Shrinkage
 - ACI, CEB-FIP, PCA...
- Comp. Strength - ACI, CEB-FIP, Ohzagi...

Section Data Definition

Quick Model Generation using Structural Wizards

Automatic generation of stories and floor diaphragms

- Defining ground level for generating static seismic and wind loads
- Building Generation Wizard

ata				
nd Level	1			
Name	Level(m)	Height(m)	Floor	-
Doof	109.30	0.00	Consider	
7F	106.10	3.20	Consider	
%F	102.90	3.20	Consider	
%F	100.10	2.80	Consider	
MF	97.30	2.80	Consider	
33F	94.50	2.80	Consider	
32F	91.70	2.80	Consider	
31F	88.90	2.80	Consider	
ROF	86.10	2.80	Consider	
29F	83.30	2.80	Consider	
28F	80.50	2.80	Consider	
27F	77.70	2.80	Consider	
26F	74.90	280	Consider	1.
Story & Wind & Seisn	wc/			These I
Canarata Story Data				Jose

Load & Boundary Conditions

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

Applicable Loads

- midas Gen enables us to specify all types of nodal, element, point, surface, dynamic, prestressing and thermal loads encountered in practice.
- · Load combination based on the various design codes
- Load group generation of load case from load combinations

- Self Weight
- Nodal Load
- Prescribed Displacement
- Elements Beam Load
- Line Beam Load
- Floor Load
- Temperature Load
- Prestress Beam Load
- Pretension Load
- Tendon Prestress Load
- Hydrostatic Pressure Load
- Wind Load
- Static Seismic Load
- Construction Stage Load
- Initial Forces
- Time History Load
- Moving Load
- Pushover Loads
- Response Spectrum Function
- Ground Acceleration
- Dynamic Nodal Loads

Floor Load

- Readily specify uniformly distributed dead and live loads on specific areas of a floor
- Automatically distributed and applied to the individual beams, girders and columns

Static Wind and Seismic Loads

• Static seismic loads and wind loads based on various international building codes

Wind Load Code	Seismic Load Code
IBC	IBC
UBC	UBC
ANSI	ATC
Eurocode	Eurocode
BS	-
IS	IS
NBC	NBC
GB	GB
Japan	Japan
Taiwan	Taiwan
Korea	Korea

Dynamic Loads

- Response spectrum load
- time history load (earthquake records, Heel drop)

Earthquake Response spectrum

Time Varying Load: Heel Drop

Applicable Boundary Conditions

Analysis Capabilities

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

Available Analysis Types

<complex-block>

++2

Analys

Construction Sequence analysis

Moving Load Analysis

> Influence Line & Influence Surface

Modal Analysis

> Eigen Value & Ritz Vector

Dynamic Analysis

- > Static Seismic Analysis
- > Response Spectrum
- > Time History

Large Displacement Analysis

P - Delta Analysis

Buckling Analysis

Thermal Stress Analysis

Heat of Hydration Analysis

Non Linear Analysis

- > Material & Geometric Nonlinearity
- > Pushover & Fibre Model Analysis
- > Inelastic Time History Analysis
- > Boundary Non-linear Analysis

Analysis Capabilities Construction Stage Analysis

- Construction Stage Analysis (Strength, Creep & Shrinkage)
- Column Shortening Analysis (Elastic/Creep & Shrinkage)

Column Shortening Results

• Time history forcing functions for walking loads for floor vibration.

- Baumann, IABSE, AIJ, Allen & Rainer

- FEMA 273, Eurocode 8, Multi-linear, Masonry & User-defined hinge type
- Displacement control & Force control
- Truss, Beam, Wall element & Spring
- Performance point & Target displacement
- Checking for acceptable performance (Drift limits & deformation/strength capacity)

- Boundary Nonlinear Time History Analysis
- Inelastic Time History Analysis (Lumped/Distributed Hinges, Fiber Elements)

- Thermo-elastic
- Maturity
- Creep & Shrinkage
- Pipe Cooling

Time History Graphs for resulting stresses and temperatures

Analysis Capabilities Nonlinear Analysis

- Material Nonlinear Analysis (Von-Mises, Tresca, Mohr-Coulomb & Drucker-Prager)
- Structural Masonry Analysis
- Analysis for finding Unknown Forces by Optimization

Available Element Types

- Compression only
- Tension only
- Gap
- Hook
- Viscoelastic Damper
- Hysteretic System
- Lead Rubber Bearing Isolator
- Friction Pendulum System Isolator
- Cable
- General Beam
- Tapered Beam
- Plane Stress
- Plane Strain
- Wall (In-plane, Out-of-plane Bending)
- Plate (Thick/Thin, In-plane/Out-of-plane Thickness, Orthotropic)
- Axisymmetric
- Solid Element (Hexagon, Wedge, Tetrahedron)

Post-processing

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

Beam Results

 $\left| \right\rangle$

Contours

Special Plots and Graphs

 $\left| \right\rangle$

Table Output

Design Capabilities

Product Overview	02
Graphic User Interface	06
Model Data Generation	12
Load & Boundary Conditions	17
Analysis Capabilities	23
Post-processing	32
Design Capabilities	37

midas **Gen**

Available Design Code

RC Design	Steel Design	SRC Design	Footing Design
ACI318-05	AISC-LRFD93, 2K	SSRC79	ACI318
Eurocode 2:2004	AISC-ASD89	JGJ138	BS8110
BS8110	AISI-CFSD86	CECS28	
IS:456 & IS:13920	Eurocode 3:2005	AIJ-SRC	
CSA-A23.3	BS5950-90	TWN-SRC92	
GB50010	IS:800-1982	AIK-SRC2K	
AIJ-WSD	CSA-S16-01	AIK-SRC	
TWN-USD92	GBJ17, GB50017	KSSC-CFT	
AIK-USD, WSD	AIJ-ASD		
KSCE-USD	TWN-ASD90		
KCI-USD	TWN-LSD90		
	AIK-ASD, LSD, CFSD		
	KSCE-ASD		
	KSSC-ASD		

- Design check for structural steel members in accordance with various design codes
- Structural steel-reinforced concrete composite member design check
- Graphical analysis of design results (by members or section properties)
- Structural steel weight optimization through automatic design check iteration and auto-renewal of section properties
- Graphical representation of Structural steel design optimization process to identify the trend
- Graphs representing stress ratios, weight distribution and average safety ratios

$ \begin{array}{c c c c c c } \hline \hline$
$ \begin{array}{c} D \operatorname{construct} \\ D \operatorname{construct} $
$ \begin{array}{c} 1 \text{ Design formation} \\ 1 Design f$
Conversion Available driver Conversion Available Avail Face Provide Conversion Available Conversi
State State <th< td=""></th<>

Design Features

- Design check for variable (tapered) I-shape structural steel section
- Design check for reinforced concrete members in accordance with various design codes (producing rebar quantity)
- Strain-stress analysis and P-M interaction diagrams for Reinforced concrete members (beam, column, diagonal & shear wall) thereby producing required reinforcing steel
- Reinforcing steel size and spacing based on auto-calculated reinforcing steel
- Slender reinforced concrete column design reflecting moment magnification and slenderness producing required reinforcing steel

(THO)		Property	1	1	_	1	_	_																								
EMB	SEL	Section	TCK	Ŋ	LCB	P	M	Ast	V-Rebar	V	Asy-H	H-Rebar	1	P-MI	Interaction Cu	rve Dialog																
ECT	-	BC HC	Height	1yv		Rat-P	Ral-M			Rat-V									10.10													
104	Г	0.000 0.000	2549.29	42318.2	1	509.232	14,4033	0.0057	18-5-P20	12.6821	0.0015	2-P10 @100							Unit : to													
0		0.000 0.00	2640.20	25492.9		0.631	0.602			0.165		-							Membe													
102	Г	0 700 0 70	2049.20	92310.2	1	0.075	19,0900	0.0044	14-4-P20	14.0723	0.0013	2-P10 @120							256													
0		C1	2549.29	42318.2		314 361	19 5087			10 3390									Section													
103	Г	0.600 0.60	3.8000	25492.9	1	0.773	0.781	0.0031	1 10-3-P20	0.247	0.0011	1 2-P10@140					P															
0	-	C1	2549.29	42318.2	2 1 184 9 1 0, 2 1 49, 9 1 0, 2 1 0, 2 1 279	184.417	20.2937		1000000000	9.62965						1.2	1															
104	Г	0.600 0.60	3.8000	25492.9		0.569	0.558	0.0031	10-3-P20	0.230	0.0011	2-P10 @140																				
0	-	Ct	2549.29	42318.2		49.2796	19.6687	0.0031	1 10-3-P20 4 14-4-P20	7.79161	0.0011	2-P10 @140 2-P10 @120							PM Cu													
106		0.600 0.60	4.2000	25492.9		0.463	0.466	0.0044		0.209									pPn-m													
0	Г	CIA	2549.29	42318.2		279.138	7.89522			3.78017	0.0013						P.M.		1													
151	-	0.700 0.70	6.0000	25492.9		0.450 0.	0.437			0.062									p Rat													
0	Г	C1A	2549.29	42318.2	1	252.116	9.27045	0.0044	14-5-P20	0.088	0.0013	2-P10 @120					$ \langle \rangle \rangle$															
152		0.700 0.70	3649.39	42318.2		213.008	8 82121			5 18763								\														
153	Г	0.500 0.60	3,8000	25492.9	1	0.486	0.484	0.0031	10-4-P20	0.124	- 0.0011	2-P10@140							Bat													
0		CIA	2549.29	42318.2		135.637	7.37021	-	0.000	3.90864	0.0000	3,010,0170				-		1	Rat-													
154	г	0.500 0.50	3.8000	25492.9	11	0.475	0.478	0.0025	0-3420	0.169	0.0003	THIO MILLO				/		/	Rat-M													
0	-	CIA	2549.29	42318.2		76.4423	7.09401	0.0025	8-3-P20	3.47593	0.0009	2-P10 @170	2-P10 @170	2-P10 @170	2-P10 @170	2-P10 @170	2-P10@170	2-P10 @170				/		/	Eccent							
156	1	0.500 0.50	4.2000	25492.9	1	0.330	0.325			0.175			×		/		X		Mc/													
Conne	et Me	del View					- Recuit V	we Online							/				Rotation													
Select All Unselect All Re-calculation								COK	CNG						My			Mr	Mcz/M													
Cran		Deta		Summary		<<																										
arap			Indate Cal		che	-	Copy T	able											P													
Draw P	MCU		apuale Ket	-		_								1																		
	-																															

- Shear wall design reflecting the slenderness of weak axis
- Spread and pile footing design
- Structural systems independently designated in each direction, i.e., Laterally braced in X-dir and unbraced in Y-dir
- Auto-calculation of effective buckling length factor (K-Factor)
- Auto-generation of design check calculations and design summaries

The optimal design feature of midas Gen optimizes the member sections, which determines the section dimensions automatically for the minimum sectional area (minimum weights) satisfying the specified design standard through verifying strength ratio (or stress ratio) in iterative analysis.

					MIDAS	/Text Ed	itor - [R	eport	_pa	rticipa	tion.txt]		
					Ele E	dit <u>V</u> iew	Window	Help					- 6 ×
					Del			X 🗈	R		MA	2 2	B 🔺 %
					00054 00055 00056 00057 00059 00059 00059 00080 00080	3, Maxim Initial 3 No	m displa tep Loadcase		8 fax,	Story o	drift rati Max,Drif	o t	-
splace	ement Optimal Desi	gn Result	IS							.1279	0.007	-	
Sect.	Sect. Name	Memb. Type	Origin Se	ct.	Proposed Sec	et. CH	K COM	LCB	^	ient	May Drif	ī	
1	C1	Stl.Col	HEM30)	HEM320	0	0.4230	5					
2	C2	Stl.Col	HEM30)	HEM320	0	0.3085	5		,2013	0,008	4	
3	C3	Stl.Col	HEM30)	HEM320	01	0.2491	5					
4	C4	Stl.Col	HEM30)	HEM320	01	0.2257	5					
5	C5	StLCol	HEM30)	HEM320	01	0.1383	3					
6	C6	Stl.Col	HEB34)	HEM300	0	0.0619	5					
7	B1	Beam	HEA28)	HEA280	0	0.6324	3					
8	B2	Beam	HEA28)	HEA280	01	0.6516	3		-003			
9	B3	Beam	HEA26)	HEA260	0	0.5846	3	*	-003			
<								>		-003			
W	Veight Steel :	1	253.8822 NN		283.0702	IN							
	RC :		0 kN		0	kN							-
	Max. Displ	lacement		Mae	Story Drift Ratio				~				•
1	WX 57.201	317	mm	RX	2F (0.008390	1					Ln 77 /	87, Col 43
												(THAN)	an 1 cm
~								2	*				
outpu	k Data		Store .										*
-	Repo	xt _	Graph	1		Indate Sect		Cancel	1				-
_								concer		-202			
										- 11			
						Di	spla	cen	ne	pnt	Ontir	nal [Desian
							10.01				- 10 011		

Thank You!

• One Stop Solution for Building and General Structures

midas **Gen**