MIDAS

Advanced Nonlinear and Detail Analysis Program

Overview

Overview	02
Geometry Modeling	15
Mesh Generation	23
Analysis —	40
Post-processing	64

// FEA is a state-of-the art integrated finite element analysis system
// for nonlinear and detail simulations of civil and building structures...

midas **FX+** Modeling, Meshing & Post-processing

MIDAS Solver

Linear, Nonlinear (Material/Geometry) Contact, Heat Transfer, Fatigue

Co-Dev. with TNO DIANA

Crack, Reinforcement, Interface

midas **FEA**

"Integrated Solution for Advanced Analysis in Civil Structural CAE"

- n Static Analysis
- n Construction Stage Analysis
- n Moving Load Analysis
- n Modal Analysis
- n Linear Buckling Analysis
- **n** Transient / Frequency / Response Spectrum Analysis
- n Material / Geometry Nonlinearity Analysis
- n Interface Nonlinearity Analysis
- n Reinforcement Analysis
- n Cracking Analysis
- n Static/Explicit Contact Analysis
- n Heat Transfer Analysis
- n Fatigue Analysis
- n Fluid Dynamics Analysis

General Detail Analysis (Linear, Material/Geometry Nonlinear)

- General detail FE analysis (linear static/dynamic analysis of concrete and steel)
- Buckling analysis of steel structure with material and geometric nonlinearity

Concrete, Interface and Reinforcement Nonlinear Analysis

• Detail analysis of composite structure (steel + concrete)

Thermal analysis and differential shrinkage analysis of steel-concrete composite girder, concrete filled steel tube and core of the SRC pier and so on

- 3D detail analysis considering steel, concrete and reinforcement simultaneously
- Detail analysis of CFT and analysis of the long-term behavior (differential settlement)
- Crack initiation and propagation in concrete structure
- Discrete modeling and analysis of masonry
- Composite modeling and analysis of wall in shear
- Detail analysis for tendon anchorage

Thermo-Elastic Analysis (Heat Transfer, Heat of Hydration)

- Analysis of heat of hydration (general, special, nonlinear)
- Detail analysis for assessment of shear capacity of pavement (de-bonding failure)
- Analysis of thermal effect due to the asphalt pavement (guss asphalt)
- Fire effect on a reinforced concrete slab
- Evaluation of residual stress and integrity of welded part

Special Analysis (CFD, Contact, Fatigue, etc.)

- Crack and fatigue analysis of the surface of structures
- Damage estimation of pier/waterbreak impacted by ship
- Life-cycle prediction of steel-box bridges based-on moving load analysis
- Fluid dynamics analysis of bridges, high-rise buildings and tunnels
- Semi-coupled fluid-structure interaction analysis
- Direct analysis of soil-structure interaction
- High-end detail analysis (crash, fatigue, fracture mechanism)

Geometry Model Data

- n Import (Geometry)
- STEP, IGES
- ACIS*, Parasolid*
- SolidWorks*, Inventor*, etc.
- AutoCAD DWG / DXF
 - \rightarrow '*' marked CAD interfaces are options.
- n Export (Geometry)
- STEP, IGES

Analysis Model Data

- n Import (Analysis Data)
- DIANA, MSC/NASTRAN
- Neutral (Text)
- n Export (Analysis Data)
- MIDAS/Civil, MIDAS/Gen
- Neutral (Text)

Standards for CAD Data Exchange

- STEP (STandard for the Exchange of Product Model Data)
- IGES (Initial Graphics Exchange Specification)

Geometry Modeling

Overview	02
Geometry Modeling	15
Mesh Generation	23
Analysis ————	40
Post-processing	64

Geometry Modeling Geometry Modeling

Advanced modeling functions support both top-down and bottom-up approaches in surface & solid modeling.

Geometry Modeling Advanced Modeling

Mesh Generation

Overview	02
Geometry Modeling	15
Mesh Generation	23
Analysis ————	40
Post-processing	64

Various of methods for generating Reinforcements and Interface Elements are provided. (auto & manual)

	Regularity Uniformity	Boundary Sensitive	Orientation Insensitive	Sizing Control (< 1/2)	Internal Curve/Point
Loop Mesher	Ö	Ö	Ö	Ö	Ö
Grid Mesher	Ö	Ö	Ö		Ö
Delaunay Mesher	Ö	Ö	Ö	Ö	Ö

FEA provides a number of modeling and meshing functions for non-manifold surface models.

Mesh Generation Automatic Surface Meshing

 FEA's Tetra Mesher auto-generates tetrahedral solid mesh with variable sizes in smooth transition. (200,000 Tetra's/min)

n FEA's Tetra Mesher is capable of including holes, curves and points that are present in/on solids.

FEA's Map Mesher generates structured (regular & orthogonal) mesh both in surfaces and solids.

FEA's Solid Map Mesher generates hexa and/or penta mesh in simple solids by full mapping or combination (auto+map).

n FEA is under implementation of H-Morph Meshing to generate Hexa-dominant mesh.
 n H-Morph is a method to generate boundary conforming, hexa-dominant mesh for arbitrary solid geometries. (FEA uses Q-Morph and H-Morph algorithms proposed by S.Owen.)
 n FEA will also provide Prism Layer Meshing function. (Outer:Prism – Inner:Tetra)

H-Morphing Procedure (Tetra® Hexa)

<u>S.Owen (1999)</u>

- FEA is <u>under implementation</u> of Sub-mapped Meshing functions for pseudo-Cartesian geometries.
- **n** FEA adopts Volume Sub-mapping algorithms proposed by D.White and M.Whiteley.
- Nolume Sub-mapping is enhanced 3D mapping technique which sub-divides geometry into volume mappable sub-regions.

Pseudo-Cartesian shapes have interior and exterior angles that are close to $\pi/2$.

FEA provides various size control methods and **adaptive seeding function** based on **user-specified mesh size** and **geometric characteristics**.

Mesh Generation Mesh P

Mesh Generation Mesh P

Interface Eleme

n Generation Method

- Select Nodes
- Input Node IDs
- Extract from Element Boundary
- Extract from Free-Faces
- Insert Both Sides of Beam/Plate
- Covert Elements

Select Nodes Input Node IDs

Extract from Element Boundary Extract from Free-Faces

Insert Both Sides of Beam/Plate

Mesh Generation Reinforcement Elements

n Check & Verify • Free Edges • Free Faces Manifold Edges Non-manifold Edges Check & Align ECS **Check Free Face** (Unconnected Element Face) n Quality Assurance Aspect Ratio Skew Angle • Taper (2D) • Warpage (2D) **Twisted Penta** Jacobian Ratio Twist • Collapse (Tetra) Collapsed Tetra • Length / Area (Near Zero Volume) Mesh Quality Plot

Analysis

Overview	02
Geometry Modeling	15
Mesh Generation	23
Analysis	40
Post-processing	64

- n Static Analysis
- n Construction Stage Analysis
- n Moving Load Analysis
- n Modal Analysis
- n Linear Buckling Analysis
- **n** Transient / Frequency / Response Spectrum Analysis
- n Material / Geometry Nonlinearity Analysis
- n Interface Nonlinearity Analysis
- n Reinforcement Analysis
- n Cracking Analysis
- n Static/Explicit Contact Analysis
- n Heat Transfer Analysis
- n Fatigue Analysis
- n Fluid Dynamics Analysis

Category		Elements	Order	Remark
	10	Truss (Gap / Hook / Cable)	1 st	Total Lagrangian
	U	Beam	1 st	Total Lagrangian
		Plane Stress (Qaud / Tria)	1 st , 2 nd	Total/Updated Lagrangian
Structural		Plane Strain (Quad / Tria)	1 st , 2 nd	Total/Updated Lagrangian
	2D	Axisymmetry (Quad / Tria)	1 st , 2 nd	Total/Updated Lagrangian
		Plate (Quad / Tria)	1 st , 2 nd	Total/Updated Lagrangian
		Shell (Quad / Tria)	1 st , 2 nd	Total/Updated Lagrangian
	3D	Brick / Wedge / Tetra	1 st , 2 nd	Total/Updated Lagrangian
	Connection	General Link	-	-
Nonstructural	connection	Rigid Link	-	-
	Mass	Point	-	-
	Spring	Matrix	-	-
		3D Point	-	-
	Interface	2D	1 st , 2 nd	-
		3D (Quad / Tria)	1 st , 2 nd	-
Poinforcomont	Embedded Bar		1 st , 2 nd	-
	Embedded Grid (G	Quad / Tria)	1 st , 2 nd	-
Heat Transfer	1D, 2D, 3D, Coolin	g Pipe, Thermal Link	1 st , 2 nd	-

Analysis

n Loadings

- Body Force
- Force / Moment
- Mass
- Displacement
- Pressure
- Beam Load
- Pre-stress
- Temperature

n Velocity / Acceleration

- Heat Generation
- Heat Flux
- Time Forcing Function
- Time Varying Load
- Ground Acceleration
- Response Spectrum
 Function

n Boundary Conditions

Multi-Point Constraint

Contact Conditions

Constraint

Convection

Radiation

Constraint based-on CSys.

Spatially Varying Pressure (Function Applied)

FEA provides arbitrary loading function which can be applied to arbitrary locations/areas regardless of node and/or element connection.

Time [sec]

PCG

179

188

817

Offshore Platform / Steel Frame n Linear Static Analysis Composed of Cylindrical Jackets Multiple Load Cases (Plate + Frame) **Result Combination and Transformation n** Equation Solvers **Direct Solvers** - Multi-frontal Sparse Gaussian Solver (Default) - Skyline Solver **Iterative Solvers** - Preconditioned Conjugate Gradient - Generalized Minimal Residual 1111111 в с Model A Model B Model C Model D Element Type Plate Plate Solid Solid 125,000 40,000 No. of Elements 30,000 30,000 No. of DOF's 180,600 390,150 132,300 181,800 Multi-frontal 35 41 3.244 262 Solution

Net Solution Times (Pentium IV 3GHz, 1GB RAM) Stress Distribution of Jacket

139

Modal Analysis
 Lanczos Method
 Subspace Iteration
 Ritz Vector

Linear Buckling Analysis Critical Buckling Modes Buckling Modes Load Combination

1st Mode (64.58 Hz)

2nd Mode (106.05 Hz)

3rd Mode (208.96 Hz)

4th Mode (270.00 Hz)

5th Mode (440.58 Hz)

n Transient Response Analysis

Direct Transient Response

Modal Transient Response

Time Forcing Function DB (54 Earthquake Acceleration Records) Nonlinear Analysis

Boundary Nonlinear Analysis (Damper, Viscous Boundary, etc.)

Frequency Response Analysis
 Direct Frequency Response
 Modal Frequency Response
 Frequency-dependent Excitation

n Spectrum Response Analysis

SRSS, CQC, ABS

Design Spectrum DB

Time Forcing Function

n Material Models von Mises Tresca Mohr-Coulomb Drucker-Prager Rankine User-Supplied Material

Tendon Anchorage (Solid) - von Mises

n Nonlinear Behaviors Hardening (Iso/Kinematic/Mixed) Softening	
n Iteration Method	
Full Newton-Raphson	
Modified Newton-Raphson	
Arc-Length Method	
Constant Stiffness	
Displacement Control	

<u>Pinched Cylinder (Plate) – von Mises</u> Material & Geometry Nonlinear Analysis Analysis

Strain

Total Stress

Stiffness Matrix

Methods
 Updated Lagrangian
 Total Lagrangian
 Co-rotational

Iteration Method
 Full Newton-Raphson
 Modified Newton-Raphson
 Arc-Length Method
 Constant Stiffness
 Displacement Control

Rectangular Tube (Plate) - Co-rotational

Interface Models
 Coulomb Friction
 Discrete Cracking
 Crack Dilatancy
 Bond-Slip
 Combined (Cracking-Shearing-Crushing)

Deformation (*Discontinuity btwn Steel & Concrete*)

Principal Stress (Virtually Transformed & Clipped View)

Visco-Elastic Models
 Kelvin
 Maxwell
 Creep-Shrinkage (Design Code)
 Temperature-Dependent Material

Heat Transfer
 Steady-State
 Transient
 Conduction, Convection, Radiation
 Pipe Cooling

Pier Table (Construction Stage) - Temperature

Pier Table (Construction Stage) - Stress

Analysis

Methods and Parameters
 S-N Method (Stress-Life)
 E-N Method (Strain-Life)
 Load / Stress History
 Rainflow Counting
 Mean Stress Corrections
 Stress Concentration Factor
 Modifying Factors

Calculation Objects
 Boundary Nodes Only (Default)
 Nodes of Selected Mesh Sets

n Results

Cycles to Failure Safety Factor (Cycles to Failure / Desired Repetition)

Contour Plot of Cycles

System Test (After Development Stage)

6	Coverage Analysis	Verify Full Coverage of Test Problems
7	Regression Test	Automated Test (Over 1,000 Problems Weekly)

Single Element Test

Dimension

 Lx = Ly = Lz = 1
 Pure Compression & Shear
 Ux = 10-3 (2x+y+z) / 2
 Uy = 10-3 (x+2y+z) / 2
 Uz = 10-3 (x+y+2z) / 2
 R Constant Stress (OK)

Plate

All constant stress values are always checked and verified!

• FEA shows superior and monotonic convergence in various mesh divisions.

Displacement Relative Error Norm w.r.t. DIANA

Displacement Relative Error Norm w.r.t. DIANA

NAFEMS (CGS-3): Hertzian Contact

Coverage Analysis	ande		Functions		Files and Lines	Diagnestic
Totals	um Lines 324,549 (919)	NL.	D WHIDAS WORKWOOLVER D WHIDAS WORKWOOLVER	WFESWEell	e al 190 teal 100 Mile Tatal Namber et Me	to 20022001 Michaeled 5
D WHICHS WORKWOOL VERWES WORKNES, 1997, 30 D WHICHS WORKWOOL VERWES WORKNES, 1997, 100 D WHICHS WORKWOOL VERWES WORKNES, 1997,	535 100 100 116 41		Num Lines Size Valided 1	DINENS DINENS DATA	Marchael DISP(24), TE(8), VT(8 DISP(24), TE(8), VT(8 DIST(11), DN V(11), S SCH DJG(3,3), DJ_1N70(3) S-0.0000000, S773503, S T-0.0000000, S773503, S T-0.0000000, S773503, S TL-0.0000000, S773503, S	AS 300AC00. WAT NOOME 0 2 1 77183. D(6.6.5. TBM(9.24). TTO(7.4.) A M(54.13). D(6.3). ASA(24.24). T 37 37 37 37 37 37 37 37 37 37
D WHOLAD WOTH WOOL EARNEE WORkstein (10) D WHOLAD WOTH WOOL ARMYEE WOrkstein (10) D WHOLAD WOTH WOOL ARMYEE WOrkstein (10) D WHOLAD WOTH WOOL ARMYEE WOOL AND (10) D WHOLAD WOOL AND (10) D	112 304 31 (1 uetosked) 22 23 123 123 123 123 123 123 123 123 1	1	14 400 15 400 16 400 17 400 18 400 19 400 20 400 21 21.600 22 21.600 23 12.8400 24 8.00 24 8.00 25 6.00	HOU HOU GALL C TIOCI CALL S DSP(DSP(TD TD TD TD TD TD TD TD TD TD TD TD TD	4 CODE(XZ, YY, ZZ, TTO, SHR) 0.26A + 0.40 OLH, STF(ASA, 24, SL, TY, ZZ 4) + LIEP 	(THE TTO ILOGE)
D WHEEAS WORLWOOL VERW EDWOOL WEGE 10 D WHEEAS WORLWOOL VERW EDWOOL VER JAN 19 D WHEEAS WORLWOOL VERW EDWOOL VER 10 D WHEEAS WORLWOOL VERW EDWOOL VERV 10	100 254 548 500 715 248 370		27 29 30 31 30 31 44 35 34	dec3 if def orrite c write c write c write c de si c de si c mmgto	<pre>irad(_defug) 78.'(a)')'disp' 78.'(a)')'disp' 78.'(b)''dop''dop'' 78.'(b)'''dop''' 78.'(b)'''tu satris'' 1.' te(78.'()'10.6)'')'tu(i</pre>	.11+1.24) .11+1.31) 1.42),42+1.3)

Counts the number of visits in execution to assure all code lines have been tested.

- Test problems are continuously augmented reflecting the result of coverage analysis.
- All test problems are automatically analyzed for regression prevention every week.

E Del	Y 1 - EMERGENCY CASES	Vala	Annesti	Estampta (remaining)	itianly		Dev. Mar	a	ge	m
0.0 10	Lohmag 3D Seithing 2D Adle care	Active	tong Ying-ist		1 - Emergency	-	Sv	st	en	n
PRIORIT	Y 3 - AS SOON AS POSSIBLE C	A555					J	50	011	
C.R.I	This	2404	damage of the	Exemption with the second second	Triuty	1	rogbugz			
D 0 13	Canada Canada 20	Activ	tim.Woo-sins	i day	3 - All poon as possible		User: Shin, Dae-seock		List;	Ne
0 0 114	Other Edge- Extractory	Actua	Les, Chang-Jin	1.8%	3 - Ar roon we possible		1.		-	
122	Di Hon humat V D B B	ACTIV	Inc. 10440-24110		3 - As soon as possible	1	Open cases by project			
D 9 122	Hote, Element, 1688 Rear Element Plag 22	Active	Ins. Yound-Julin		3 + A1 cont as possible		000 Common	6	9	0
0 0 122	Check, Doutloated	Active	tics. West stora		3 - As soon as possible	1	001_CTS	0	5	i.
PRIORIT	Y 4 - FIX BY THIS WEEK CAS	5					002	1	0	a
Carr	B1072	State	Assistants	Estimate Greenwood	Plianty		0.0.3_MEC	5	3	0
D 9 14	THE Emolity (Care Fair CTL)	Artist	N.Has		d - fin by this read.	"K	14_E2IR	1	1	0
0 0 4	Theo, Annual Lines.	ACTIVE.	M. Har		-4 - Fix by this rest.		SOS_FEA	0	1	0
0 9 29	THO Add finest Foundary Demost.	Resolved (mplemented)	Nim, Web-Jond		d - Fit be this met.		010_Solver	3	2	0
0 9 15	2011年2月2日月	Active	tim Web link	ET Nov P	4 - The by this wedl		100_Development Plan	0	4	0
PRIORIT	Y 5 - PIX IF TIME CASES						Dpen cases by client	•	•	
	1.004	2804	Annesala	Estamate annuming	Printfy		Internal	18.	25	1
0.00	Lon boost	Active .	Les. Charg-pa		S - Fin if time	2	The Operation of Streetware		•	1
0	Carl In the									
	Hurthon Samal's Provantica # 21 B 25 192	Active	Mrs. Townser Journal		5 - Fie Filmer	E	- openeerin evillent	-		
	Handreichen Schuffe Protections 보인 옵션 변경 Nationality Function 관련	Active Resolved dis Design)	Mic. Websites		5-Fie Form 5-Fie Form		Global:			

Manages and traces new features / bugs / supports with full revision history.

Dev. Mai Sy	na /st	ige tei	en m	nent & Bug Tracl (Web-based)	king	
rogbugz		15		in Para King Paint (Anglian) B	Search 7	1
Creek Shin, Dae-seock C. Open cases by project 000_Comman 001_CIS 002 003_MEC 14_EXR project Common Plan 100_Development Plan 100_Development Plan 100_Development Plan 100_Development Plan C. Open cases by referre Cleobal: Undecided 001_CTS: v152_217(2006 (Past)	6 0 1 5 1 0 3 0 0 1 6 1 6 1 6 0	9 9 5 0 1 1 1 2 5 9 5 0 5 1 1 1 2 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5		Welcome to Forfaurz. DefectTracking. Help Desk. and Oxine Forum TASKS Liss Enter & New Case Send Email Capture Screenshots Seatch Distussion Groups Release Notes Configure Options and Snippets ASSISTANCE Fogtugz Help Contart the Local	Rers Discuss Emplots Log-Off You are logged on an Shin, Dae-seeck (Log.Off) SHOW ME: McCases Manage filters	
El Open cases by priority	(FogBugz Administrator		×

Post-processing

Overview	02
Geometry Modeling	15
Mesh Generation	23
Analysis	40
Post-processing	64

n Complete Support for Visualization and Interpretation
 Flexible User-control on Legends, Colors, Fonts, Magnification, etc.
Multiple Plots, Graphs and Tables in Multiple Windows
 Deformed Shape Combined with Undeformed Shape (including Mode Shape)
 Local Plots defined by Geometrical Topology or User-selection
Contour Plots and Animations (AVI)
 Iso-value Lines (2D) and Surfaces (3D)
Clipping Planes and Slice Lines/Planes
Partitioned Plots
History Plots in Various Graphs and Animations (AVI)
Result Values in MS-Excel compatible Tables
Result Probe and Extraction
Result Extraction for Construction Stage Analysis and Time History Analysis
Screen-shots in WMF, BMP, PNG Picture Formats
State-of-the-art Reports Generated by XML and HTML

Result Table

15

D

te.

Post-processing Contour Plot Type

Post-processing Iso-surface Plot

Geotechnical Model with Multiple Strata Configuration

Symmetry Plane

Post-processing Diagram Plot

Post-processing Vector Plot

- Step (Nonlinear / Construction Stage Analysis)
- Coordinate (User-defined Coordinate Sys.)

Stop	NO0E-2251	8006-2252	8006-2251	8008-2254	BODE 2520	HODE 2521	N000-2522	8006-5529	BODE 2002	KODE-2908
	-0.130986	8,2104.95	8,899715	1.600195	1,500000	LOUGHL	8,999004	- R 503906	-8.811846	-8,764219
58	-0.040654	1,000477	0.082004	1,0012971	1.409250	6.086001	6.676137	A SOMETT	-0.001001	-0.279000
100	11.0710214	8.201200	C.FTUTH.	2148643	8.000000	61882223	6.667753	8.002201	-1.040608	-2.12510
105	9.790540	1,121727	1,007776	2.490222	1.272470	4,008041	7.103004	18,025900	1.779007	1,960025
100	0.730400	1,104207	1.100000	2.430250	3.903778	4.056103	7,140030	18,240900	-1 305215	-1,040120
105	0.704191	1,133605	1,707900	2.400234	3.549070	4,077028	7,102970	18.500000	1, 150534	1.005005
178	0.0027945	A, DAMAGE	0.026005	2.540063	8,409512	4,1000028	7,210064	88,303643	PR 705002	PE.801404
175	0.090000	1.300790	1.090257	I 600581	1.400 000	1.004399	121010	18,381563	+1 TE1004	+1.307534
100	1010012003	1.TITSTP.	1. SHOTLE	8.019258	1536.041	1.001271	11,222,200	18.472103	71.1900	-1.000365
185	111880344	1.460946	2.08842	EK9155	1.0525(3)	5,1002.23	7.476495	18,598143	-1 support	-1.8 NEWS
198	1.026572	1.000444	1,11,2174	295,203	R INCRASES	1010301	EXMANCE	18.471673	11.631220	1206454
105	1 206010	1,7221.10	E.MTURT	R.TEFTET.	1,945101	5.41300	7,716466	18,799160	-1.487008	-6,548375
000	1.000913	1.306932	2,897907	8.381299	8,000204	1.500781	THETHER	CTHORN BY	+4.XE006855	+6,000110
006	1.005504	2124270	2,742007	8.46721-5	1,018000	8,764124	8,012678	71,090870	-1.407014	-1.01011
018	1.01A000	2.402900	£1999956	2.660536	8,873064	5.042147	8,199062	81,257930	1.239404	-1,297400
215	2,210,042	2,732426	1,000190	2542544	8,752208	6,103104	0.300123	11,401305	-1.000134	-0.544200
224	E 729965	2111107	2,613191	4237572	4,917010	8,408001	8.010181	11,670010	-0.002523	-0.0090005
425	1030228	1.428742	2.001031	4.040380	8,230430	8.001002	8.000032	11.907900	101501000	-0.412521
156	3454022	8744308	4.105258	4.79(790	1,404(67	£.000014	8.099407	12,144130	10.572597	~0.917905
175	3.37(14)	2.670.61	4.13527.8	4.7508/47	6.55539177	3.CRIMIN	8218212	32.379943	8116798	*0.000400
140	828500	8.58,788,85	4.614122	# 65CPUT	S. Ashannis	2.0177944	4.517764	77,406830	RI 1954AUTS	13.1372491
545	017021	0.6409990	8.8746278	a harowt	8.9459R72	. 4.914708	0.25.0440	12, 194 100	10 10 10 10 1	128000
25.4	1076310	8,317606	1.175000	4.04071.8	L147903	4,001108	8110255	12,252883	180202546	-0.019464
058	2:561063	3,15746	1.604700	8,304221	8,144108	8,606402	8,000410	12,180030	0.100700	-0.114130
000	2.900960	8,174032	1,601000	4,216705	5.040151	6,500627	0.011130	12,813030	0.000404	-0.360670
\$29	2740440	8.302509	2,452414	4.064766	8.005773	6.415757	9,725296	11,827960	-0.001342	-0,429040
100	a distance.	R. Salaria Sec.	a company	The substances	A AMOUNT N	a stated in	distant and the	an Assessed	in this is	and Report of

MS-Excel compatible Table (Time & Result Value)

Graph (Time .vs. Result Value)

Y

(m)

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

34,75

Points

Z (m)

182,00

182,00

182,00

182.00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

182,00

Value

0,0001

0,0001

0,0001

0,0000

-0,0001

-0,0003

-0,0005

-0,0008

-0,0011

-0,0014

-0,0017

-0,0019

-0,0021

-0,0022

-0,0024

-0.0024

In FEA, legend can be controlled for its position, size, format and range (including min/max value) by mouse dragging.

Thank You!

Advanced Nonlinear and Detail Analysis Program

