
 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 
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1-1 Overview 

 

The coordinate systems, that are used to define a finite element system of a structure or the 

analysis results, are the following.   

 

 GCS: global coordinate system 

This is a right hand Cartesian coordinate system and the complete model can refer to this 

system. Capital letters X-Y-Z are used to identify the axes.  

 

 ECS: element coordinate system 

This is a right hand Cartesian coordinate system and one or more elements can refer to this 

system. Lower case letters x-y-z are used to identify the axes.. 

 

 Other coordinate systems 

Other coordinate sytsems are the NCS (nodal coordinate system), the OCS (output 

coordinate system) and the MCS (material coordinate system). 

GCS

Z

z
1

2
3

Y

y

X

x

ECS

MCS

 

Figure 1-(1) Coordinate Systems  

Chapter 1. Structural Elements 
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2 We Analyze and Design the Future 

The element library of midas FEA consists of the following element-types: 

 

 Truss Elements 

 Beam Elements 

 Shell Elements 

 Plane Stress Elements 

 Plane Strain Elements 

 Axisymmetric Elements 

 Solid Elements 

 Elastic Link/Point Spring/Point Damping/Matrix Spring/Rigid Link Elements 

 

A finite element is defined by the element-type and the numbers of the connecting nodes.  Based 

on the sequence of the node-numbers the ECS is defined.  Dependent on the element-type 

geometrical data and material data must be specified.  An overview is given below.    

 

Element-type  Geometrical data Material Data 

Truss Elements Cross sectional area  Material model 

Beam Elements Cross section definition Material model 

Plane Stress Elements Thickness  Material model 

Shell Elements Thickness Material model and MCS 

Plane Strain Elements Thickness  Material model 

Axisymmetric Elements - Material model 

Solid Elements - Material model and MCS 
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The overview of which element-types can be used in a certain type of analysis is given below.  

The check „‟ mark indicates that the element is available in the analysis-type. 

 

 

*Note: CFD (Computational Fluid Dynamic) Analysis uses specific shell elements. 
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Linear 

Analysis 

Nonlinear  
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Truss              

Beam              

Plane Stress              

Shell              

Plane Strain              

Axisymmetric              

Solid              
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The analysis load cases, which can be used for each element type, are listed below.   
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T
em
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d
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Truss          

Beam          

Plane Stress          

Shell          

Plane Strain          

Axisymmetric          

Solid          
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The analysis types, which can be used for each material type, are listed below. 
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Elastic        

Multi-Elastic        

Rankine        

Tresca        

Von Mises        

Drucker Prager        

Mohr Coulomb        

Total Strain Crack        

User Supplied         

Creep/Shrinkage 
*
       

(* Linear construction stage Analysis, Heat of Hydration Analysis) 

 

 

 

 

 

 

The following table gives an overview of which material-types can be used in combination with 
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6 We Analyze and Design the Future 

which element- types. 

 

M
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Element Type 
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ss
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m
 

P
la

n
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S
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S
h
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l 

P
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n
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A
x

y
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m
m
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c 

S
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d
 

Elastic        

Multi-Elastic        

Rankine        

Tresca        

Von Mises        

Drucker Prager        

Mohr Clulomb        

Total Strain Crack        

User Supply         

Creep/Shrinkage        
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The calculated results for static analysis are listed below.     

 

Element Type 

Calculated Results 

Stress Strain Element Force 

Default Output 

Coordinate 

(changeable) 

Truss    ECS (no) 

Beam    ECS (no) 

Plane Stress    ECS (yes) 

Shell    ECS (yes) 

Plane Strain    GCS (yes) 

Axisymmetric    GCS (yes) 

Solid    GCS (yes) 

 

In contrairy to truss and beam elements the accuracy of results in plane stress, shell, plane strain, 

axisymmetric and solid elements are strongly affected by the element-size and the element 

distribution.  A finer discretization is required in the following situations.    

 Regions of geometric discontinuity (i.e. areas close to sharp corners on the edges or 

in the vicinity of an opening on the model) 

 Regions where applied loadings vary drastically or where concentrated loads are 

applied 

 Regions where the cross section of a beam, the thickness of a shell or the material 

properties are discontinuous 

 Regions where detailed stress/force results are required 

 

Further, the following recommendations are given: 

 Size variation between adjacent elements should be kept to less than 1/2. 

 If stress results are of interest, 4-noded quadrilateral elements and 8-noded brick 

elements should be used; instead of 3-Noded triangular elements and 4-noded 
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8 We Analyze and Design the Future 

tetrahedron elements, higher order elements should be used. 

 

 All the corners of planar elements should be chosen such that the angles are close to 

90o for quadrilateral elements and close to 60 o for triangular elements.  Each corner 

angle of a quadrilateral element should be within the range of 45o and 135 o.  For a 

triangular element, each corner angle should be within the range of 30 o and 150 o. 

 In the case of a quadrilateral element, all the four nodes should be on the same flat 

plane.  

 Where a node is shared between truss, plane stress and solid elements, which have no 

rotational degrees of freedom, a singular error may occur when no specific measures 

are taken.  Therefore, in such cases, midas FEA automatically assigns rotational 

degrees of freedom to these nodes. 

 

The element stiffness matrix e
K is defined in the ECS (element coordinate system) by the 

following equation. 

e

e T

V
dV K B DB         (1.1) 

Here the matrix B  is the strain-displacement-matrix which is based on the shape function N  

and its derivatives, and D  is a matrix representing the relation between stress and strain. N  is 

consisted of the shape function,
iN  that defines for the Gauss-point with the natural coordinates, 

     how the position of the Gauss-point can be interpolated from the positions of the 

nodes of the element. 
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1-2 Truss Element 

 

1-2-1 Overview 

 

A truss element is a “uniaxial tension-compression 3D line element” defined by two nodes.  

Truss elements are generally used for modeling space trusses and/or diagonal braces and can be 

used for both static (linear & nonlinear) and dynamic analyses.  A truss element transmits only 

axial forces and may be combined with tension-only/compression-only functions. The stress and 

strain tensors of a truss element are expressed as follows: 

 xxσ ,  xxε    (Stress & strain in axial direction) 

Since a truss element only has degrees of freedom in the axial direction as shown in Fig. 1-(2), 

only the ECS x-axis is meaningful.  The direction of the ECS axis is defined from Node 1 to 

Node 2.   

 

 

Figure 1-(2) Element Coordinate System and Stress/Strain Convention of Truss Element  
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10 We Analyze and Design the Future 

1-2-2 Finite Element Formulation 

 

The cross sectional area A is assumed to be constant throughout the entire length Le of the truss 

element. The truss element has 2 Gauss-points which are located according to the Gauss-scheme 

between the 2 nodes. The truss element only has translational displacement degrees of freedom, 

u , in the ECS x-direction .  

 i iuu         (1.2) 

The coordinate x and the translational displacement u can be expressed by the shape functions at 

the 2 Gauss-points noted below with ξ being the iso-parametric coordinate of the truss element. 

   
2

1

i i

i

x N x


 , 
2

1

i i

i

u N u


       (1.3) 

 1 2

1 1
, 1 1

2 2
N N

 


 
          (1.4) 

The relationship between the nodal displacement and strain can be expressed by the strain-

displacement matrix
iB in the equation (1.5). 

2

1

i i

i

ε B u        (1.5) 

The matrix 
iB  is a derivative of the shape function, which is expressed as, 

i
i

N

x

 
  

 
B          (1.6) 

Using the matrix
iB , the element stiffness matrix in ECS, is expressed as, 

e

T

ij i j
L

dL K B DB ,   A ED     (1.7) 

where, A is the cross section of area, 
eL  is the length of the truss element, D the stress-strain 

matrix, and E is the Young‟s modulus. 
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The element stiffness matrix of a truss element can be written as follows: 

1 1

1 1
e

EA

L

 
  

 
K        (1.8) 

 

1-2-3 Loads and Masses 

 

Loads that can be applied to a truss element are body force, prestress, thermal load, etc.  The 

body force is a load, which represents the self weight of an element or the inertia force that acts 

on an element.  A prestress load is used when a tension force needs to be introduced in a truss 

element as an internal force.  A temperature load is used to reflect thermal deformation due to 

nodal temperature and element temperature loads.  The load vectors in the ECS for prestress and 

temperature loads can be expressed as below. 

 

 Body force 

e

x

i i y
L

z

A N dL







 
 

  
 
 

F         (1.9) 

where, , ,x y z   are the weight density vector components 

 

 Prestress load 

e

T

i i
L

PdL F B      (1.10) 

where, P is the axial prestress force 

 

 Temperature load 

e

T

i i
L

EA TdL F B      (1.11) 

where,  is the linear thermal expansion coefficient and T is the temperature change. 
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The lumped mass and the consistent mass matrices of a truss element only comprise translational 

displacements in the , ,x y z  directions and are defined as follows. 

 

 Lumped mass 

1

0 1 .

0 0 1

0 0 0 12

0 0 0 0 1

0 0 0 0 0 1

e

symm

AL

 
 
 
 

  
 
 
 
  

M         (1.12) 

where  is the mass density 

 

 Consistent mass 

2

0 2 .

0 0 2

1 0 0 26

0 1 0 0 2

0 0 1 0 0 2

e

symm

AL

 
 
 
 

  
 
 
 
  

M    (1.13) 
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1-2-4 Element Output 

 

Analysis results for a truss element comprise the element (internal) forces and stresses at Nodes 1 

and 2 with reference to the ECS.  The calculated element force is the axial force, ( )x xxN A .  

When the axial force is in tension as shown in Fig. 1-(3), it retains a positive („+‟) sign.  In 

general the element forces are equal at two nodes, but they can be different in case of acting self 

weight load on the element.   

 

 

Figure 1-(3) Element Forces/Stresses in Truss Element  

 



 

 

Chapter 1  |  Structural Elements 

m
id

a
s 

F
E

A
 

14 We Analyze and Design the Future 

 

1-3 Beam Element 

 

1-3-1 Overview 

 

A beam element is a line element that is defined by two nodes and accounts for elongation, 

bending, shear and torsion. If bending, shear and torsion are not relevant, then the truss element 

can be used as alternative to the beam element. Beam elements are generally used to model 

structures that are relatively long compared to the section dimensions. If the ratio of the section 

depth to the length is greater than 1/5, the use of shell or solid elements is recommended. This is 

due to consideration of the effect of shear deformations in beam elements in a very accurate way. 

The beam element can be used for both static (linear & nonlinear) and dynamic analyses and is 

capable of accounting for axial deformation, bending, torsion, shear deformation, etc.  

Stress, strain and element force are expressed as follows:   

 xxσ ,  xxε          (Stress & strain in axial direction) 

y

z

M

M

 
  
 

M , 
y

z





 
  
 

κ         (Bending moment & curvature) 

 xMT ,  xφ           (Torsional moment & torsion angle) 

y

z

Q

Q

 
  
 

Q , 
xy

zx





 
  
 

         (Shear force & shear strain) 

The sign convention for beam element forces and stresses is depicted in Fig. 1-(4) and the arrows 

represent the positive (+) directions. When the user defines the shear area equal to zero, the 

corresponding shear deformations of the beam element will be ignored.  
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Figure 1-(4) Element Coordinate System and Stress Convention of Beam Element  

 

Beam element forces and stresses are expressed with reference to the ECS. The direction of the 

ECS x-axis is defined from Node 1 to Node 2. The directions of the ECS y and z-axes are shown 

in Fig. 1-(4) and defined according to one of the three methods as shown in Fig. 1-(5), (6) & (7). 

Once the ECS z-axis is defined, the ECS y-axis is automatically defined following the right-hand 

rule. 

 

Defining ECS using Beta angle 

The ECS of the beam element is defined by using the angle  . If the beam is oriented in the 

vertical direction, i.e. the ECS x-axis for the beam element is parallel with the GCS Z-axis, the 

beta angle   is defined as the angle between the GCS X-axis and the ECS z-axis (Fig. 1-(5)a). 

However, if the beam element is not oriented in the vertical direction, the beta angle   is defined 

as the angle from the GCS Z-axis to the ECS x-z plane (Fig. 1-(5)b). 
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Defining ECS using a Node 

By specifying a node that is not located on the ECS x-axis the local x-z plane is defined as 

illustrated in Fig. 1-(6).  

 

Defining ECS using a vector 

By specifying a vector that is not parallel to the ECS x-axis the local X-Zplane is defined as 

illustrated in Fig. 1-(7). 

 

    q

 

(a) Case of vertical members  

 

 

(b) Case of non-vertical members  

Figure 1-(5) Defining ECS using Beta Angle Conventions  

X′: axis parallel to the global X-axis 
Y′: axis parallel to the global Y-axis 
Z′: axis parallel to the global Z-axis 

GCS 

GCS 
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Local y

1

2

Local x

Local z x-z plane

X

Y

Z

GCS

3

kV

 

Figure 1-(6) Defining ECS using a Node  

 

Local y

1

2

Local x

Local z x-z plane

( , , )kV

X

Y

Z

GCS
 

Figure 1-(7) Defining ECS using a K-Vector 
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18 We Analyze and Design the Future 

1-3-2 Finite Element Formulation 

 

The cross-section shape and dimension of a beam element is assumed to be constant throughout 

the full length. A beam element has three translational and three rotational degrees of freedom at 

each node with respect to the ECS. The axial stiffness of a beam element is identical to the axial 

stiffness of a truss element. In the same way as the axial stiffness the torsional stiffness of the 

beam element can be calculated. The calculation of bending and shear stiffness is based on the 

Timoshenko Beam theory or the Euler Beam theory.  

 

The formation of the element stiffness matrix related to the deformation in the axial direction is 

identical to that for a truss element.   

 i iuu          (1.14) 

1 1

1 1
axial

e

EA

L

 
  

 
K             (1.15) 

where, A is the cross section area and 
eL is the element length 

 

The torsional stiffness matrix of a beam element is calculated as follows:  

  i xiu          (1.16) 

1 1

1 1

x
torsional

e

GI

L

 
  

 
K                (1.17) 

where, 
xI is the torsional resistance and G is the shear-modulus 

 

Since the shear and bending effects are related to each other, the formulation of these effects to the 

stiffness matrix will be combined. First, we will explain the shear stiffness, which is based on the 

Timoshenko Beam theory. The shear and bending deformation in the ECS x-z plane are defined 

by the translational displacement w in the ECS z-direction and the rotation θy around the ECS y-

axis. 
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 
T

i i yiw u         (1.18) 

A coordinate x in the element‟s axial direction and the translational displacement w  can be 

expressed with linear interpolation functions: 

2

1

i i

i

x N x


 ,  
2

1

i i

i

w N w


         (1.19) 

However, the rotation around the ECS y-axis is a quadratic interpolation function, 

2

3 3

1

y i yi y

i

N P  


          (1.20) 

2

1 2 3

1 1
,    ,    P 1 ( 1 1 )

2 2
N N

 
 

 
            (1.21) 

In order to calculate the virtual rotation 3y at the mid-point of the element, the following 

assumptions are made. 

 Shear force and bending moment must be in equilibrium. 

y

z

M
Q

x


 


       (1.22) 

 The average shear strain zx  calculated from the equilibrium equation (1.22) must be 

equal to the shear strain zx  calculated from the shape function along the full length of the 

beam element:   

  0
e

zx zx
L

dL           (1.23) 

 

Based on the above assumptions, the virtual rotation 3y at the mid-point can be expressed as, 

 

1

1

3

23

2

3
1 1

2 1 2 2

ye e
y

e

y

w

L L

wL








 
 
  

          
 
 

,   
3 2

12 y

sz e

EI

GA L
   (1.24) 

Where syA is the effective shear area in the z -direction, yI is the area moment of inertia and G 
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is the shear modulus. 

 

The matrix 
biB relates the nodal d.o.f.‟s to the curvature y : 

2

1

y bi i

i




B u         (1.25) 

3 3

3 3

3 3

2 (1 ) 4(1 )

i i
bi

e

a P P N

L x x x 

   
  

     
B ,  

1 1,a   2 1a   (1.26) 

zx  is the shear deformation, and the relationship between zx  and the nodal displacement can 

be expressed by the matrix
siB : 

2

1

zx si i

i




B u          (1.27) 

3 3(1 ) 2(1 )

i e
si

e

a L

L  

 
  

  
B ,  

1 1,a   2 1a        (1.28) 

Accordingly, the contribution of shear and bending to the stiffness matrix is:  

( )
e

T T

ij bi b bj si s sj
L

dL K B D B B D B     (1.29) 

 b yI ED ,  s syA GD         (1.30) 

By integrating and rearranging the equation (1.29), the bending and shear stiffness in the ECS x-z 

plane is defined by the matrix below. 

3 2 3 2

3 3

2

3

3 2

3

12 6 12 6

4 6 2
1 1

4 2

1 12 6

4
. 1

4

e e e e

y e e e

bending shear

e e

L L L L

EI L L L

L L

Symm
L

 





 
   

 
    

     
     

 
 
 
 

   
   

K K  (1.31)  
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In the same way the bending and shear stiffness in the ECS x-y plane are calculated. 

 

In order to calculate the stiffness without considering the shear deformation based on the Euler 

Beam theory, the formulation is based on the following equation, instead of using the equation 

(1.23), which assumes the presence of shear strain.   

0
e

zx
L

dL           (1.32) 

Substituting 
3 0   into the equation (1.31), the pure bending stiffness will be obtained. 

 

 

1-3-3 Loads and Masses 

 

Loads that can be applied to a beam element are the beam load, the body force, the prestress, the 

thermal load, etc. The body force represents the self weight or the inertia force of an element. The 

beam load can be a concentrated or distributed load, which works along the length of an element, 

and can be entered either in the ECS or in the GCS. The prestress load is used when tension 

deformation needs to be introduced in a beam element by an internal force and is applied along 

the ECS x-direction. The value of the prestress is equal to the desired value of the stress in the 

element when both ends of the element are restrained. The temperature loads may cause thermal 

deformation in londitutional direction of the beam element and temperature gradient loads may 

result in bending of the element.   

 

 Beam load 

A beam load can be a concentrated or distributed load. The loaded zone may be part of the 

element length and can be specified by the user. In all cases the beam load is automatically 

converted into equivalent nodal loads. In the calculation of internal forces, beam loads are 

handled such that the internal forces at I-end, 1/4, 1/2, 3/4 and J-end of an element are 

exactly calculated. Fig. 1-(8) illustrates the various types of beam loads. 



 

 

Chapter 1  |  Structural Elements 

m
id

a
s 

F
E

A
 

22 We Analyze and Design the Future 

P 1

P

I J

I J

M

m1

m2
P 2

 

(a) Types of beam loads (concentrated loads & distributed loads)  

 

L L 

w

w

Z

X

Z

X  

(b) Distributed loads using the Projection option  

Figure 1-(8) Examples of beam loads  

 

 

 Body force 

e

x

i i y
L

z

A N dL







 
 

  
 
 

F       (1-33) 

where, , ,x y z   are the weight density vector components 
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 Prestress load 

e

T

i i
L

PdL F B   (1-34) 

where iB is identical to the equivalent matrix of the truss element and P is the axial 

prestress force 

 

 Temperature load 

e

T

i i
L

EA TdL F B      (1-35) 

where  is the linear thermal expansion coefficient and T is the temperature change. 

 

 

The mass of a beam element can be defined as lumped mass or as a consistent mass. The lumped 

mass of a beam element is composed of translational displacements in the , ,x y z  directions and 

similar to the truss-element, has the magnitude of   2AL in all directions. The consistent 

mass of a beam element is accounted for all translational displacements and rotational 

displacements. 

 

 Consistent mass 

2

2

2 2

2 2

140

0 156 .

0 0 156

0 0 0 140

0 0 22 0 4

0 22 0 0 0 4

70 0 0 0 0 0 140420

0 54 0 0 0 13 0 156

0 0 54 0 13 0 0 0 156

0 0 0 70 0 0 0 0 0 140

0 0 13 0 3 0 0 0 22 0 4

0 13 0 0 0 3 0 22 0 0 0 4

e e

e ee

e

e

e e e e

e e e e

symm

J

A

L L

L LAL

L

L

J J

A A

L L L L

L L L L



 
 
 
 
 
 
 
 

 
 

 








 


   

M 









  
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        (1-36)  

where J is the polar moment of inertia. 

 

 

1-3-4 Boundary Constraints 

 

In midas FEA End Release and Offset conditions may be applied to beam elements. When 

members are connected by pins or slotted holes, the Beam End Release option is used as shown in 

Fig. 1-(9). Beam End Release is applicable to all the degrees of freedom of a beam element. The 

end release constraints are always specified in the ECS. Caution is required when stiffness in the 

GCS is to be released. Further, the end release conditions may produce singularities in the system, 

and therefore, the user is advised take care when applying end release conditions and to ensure 

that the force-transmission in the system is captured. 

 

 

 

 

 

 

 

(a) Pin connection                                 (b) Slot-hole connection 

 

 

 

 

 

 

 

(c) Pin connection of multiple beam elements  

rotational d.o.f. released 

rigid connection 

rotational d.o.f. released 

girder 

beam 
column 

slot hole 

girder 

axial direction 
d.o.f. released 
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(d) Connection of elements with different degrees of freedoms  

Figure 1-(9) Examples of Beam End Release Conditions  

 

 

It is possible to model situations in which the neutral axis of a member does not pass through a 

node by using Offsets Conditions, without creating additional nodes. There are two types of 

offsets, the local offset and the global offset.  

 

The “Global Offset” can be defined as the distance vector in the GCS between the ends of two 

beam elements as illustrated in Fig. 1-(10). The stiffness and loads of an offset beam element are 

corrected for the offset condition.  

beam 

wall 

rigid connection 
beam element 

rigid beam element 
for connectivity 

all rotational degrees 
of freedom and 
vertical displacement 
degree of freedom 
released 

plane stress or shell elements 
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(a) Column connection with eccentricity (b) Beam-column connection with eccentricity 

Figure 1-(10) Beam End Global Offset 

 

The “Local Offset” can be defined with reference to the ECS as illustrated in Fig. 1-(11). Midas 

FEA uses the distance between the end nodes when the axial and torsional stiffnesses of an 

element with offset are calculated. The effective length of the beam, which the offset has been 

subtracted, is used for the calculation of the shear and bending stiffnesses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-(11) Beam End Local Offset (A, B: Local Offset Distance) 

 

eccentricity in  
the X-direction 
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     offset at ith node               offset at jth node 

distributed load on beam element 

ithnode 

zone only ccounting to shear force 
at i–th node 

zone accounting to  
shear force and bending 
moments  

zone only accounting to shear 
force at j–th node 

L1 (zone accounting to shear 
and bending stiffness) 

locations for member force output() 

jthnode 

 Li Lj 

L 

V4 V2 
  

V3 V1 

 M1 M2 

Fig. 1-(12) illustrates the calculation of distributed loads in the situation that “Local Offset” is 

applied. The distributed load accounting to an offset zone is converted into an equivalent shear 

force at the corresponding node only where this section does not contribute to the bending 

moment. At the remaining part the distributed loads are converted into shear forces and moments. 

The calculation of the body forces is identical to that of distributed loads. The member forces for 

beam elements are defined at the offset positions.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Li=ZF  Ri “Offset Position” is the location of the force output 

Lj=ZF  Rj “Offset Position” is the location of the force output 

Ri               Offset distance at i-th node 

Rj Offset distance at j-th node 

ZF Offset Factor 

V1, V2 shear forces equivalent to distributed load between the offset ends 

M1, M2 moments equivalent to distributed load between the offset ends 

V3, V4 shear forces equivalent to distributed load between offset ends and nodal points 

 

Figure 1-(12) Beam load distribution of the force output  
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1-3-5 Element Output 

 

The member forces for beam elements are produced at 5 locations. The output positions are at I-

End, 1/4, 2/4, 3/4 and J-End of the element‟s length. The arrows in Fig. 1-(13) represent the 

positive (+) directions.  

 

 Axial force 
xN  

 Shear force ,y zQ Q  

 Torsional moment 
xM  

 Bending moment ,y zM M  

 

 

Figure 1-(13) Output Convention of Beam Element  
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1-4 Shell Element 

 

1-4-1 Overview 

 

There are triangular and rectangular shell elements defined by 3, 4, 6 or 8 nodes. Shell elements 

can be used for modeling pressure vessels, braced walls, bridge decks, etc. Shell elements can 

account for in-plane deformation (plane stress) and out-of-plane deformation (bending and shear) 

and can be used for both static (linear & nonlinear) and dynamic analyses. Stress and strain for 

defining the deformation of a shell element are expressed as follows: 

xx

yy

xy







 
 

  
 
 

σ , 

xx

yy

xy







 
 

  
 
 

ε            (In-plane stress & strain) 

xx

yy

xy

M

M

M

 
 

  
 
 

M , 

xx

yy

xy







 
 

  
 
 

κ          (Bending moment & curvature) 

zx

yz

Q

Q

  
  
  

Q , 
zx

yz





  
  
  

γ           (Shear force & shear strain) 

 

The sign convention for in-plane stress & strain is equal to that for plane stress elements (Fig. 1-

(23)) whereas the sign convention for bending moments and shear forces is presented in Fig. 1-

(14). The arrows represent the positive (+) directions. 
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,yz yzQ

,xy xyM

,yy yyM

z
y

ECS
x

,
zx zxQ

,xy xyM
,xx xxM

 

Figure 1-(14) Stress Sign Convention of Shell Element 

 

The ECS is based on x, y & z-axes in the Cartesian coordinate system. The directions of the ECS 

axes are defined as shown in Fig. 1-(15). In the case of a quadrilateral element, the line 

connecting the mid point of Node 1 and Node 4 to the mid point of Node 2 and Node 3 defines the 

direction of the ECS x-axis. For a triangular element, the line parallel to the direction from Node 1 

to Node 2 defines the ECS x-axis. 

 

1

2

3

ECS z-axis

ECS y-axis

ECS x-axis
(1 →2 direction)
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ECS z-axis

ECS y-axis

ECS x-axis

1

2

3

4

 

1

4

5

6

2

3

ECS z-axis

ECS y-axis

ECS x-axis
(1 →2 direction)

 

8 7

5
6

ECS z-axis

ECS y-axis

ECS x-axis

1

2

3

4

 

Figure 1-(15) Element Coordinate System of Shell Element 
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There are two types of shell elements: “Discrete Shell elements” and “Curved shell elements”. 

The discrete shell elements are available for shapes with 3 or 4 nodes and the curved shell 

elements for shapes with 6 or 8 nodes... 4-node discrete shell elements generally provide accurate 

results for the computation of both displacements and stresses. However, 3-node discrete shell 

elements tend to provide poor results in stresses whereas the calculated displacements are accurate. 

therefore it is advised not to use 3-node discrete shell elements in model areas where detailed 

analysis results are required. 
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1-4-2 Finite Element Formulation 

 

A shell element has three translational degrees of freedom in the ECS x, y and z-directions and 

two rotational degrees of freedom in the ECS x and y-axes. The discrete shell element separately 

accounts for in-plane and out-of-plane stiffness effects. Whereas the curved shell element uses the 

“continuum shell approach”,. 

 

(1) Discrete Shell 

The following element formulations are used for discrete shell elements: 

 In-plane deformation 

 3-node element 

Iso-parametric Element (identical to that of a plane stress element), for which 

Drilling d.o.f. (rotational d.o.f. about the z-axis) may be activated or not. 

 4-node element 

Iso-parametric Element (identical to that of a plane stress element), for which Drilling 

d.o.f. (rotational d.o.f. about the z-axis) may be activated or not. 

 Out-of-plane deformation 

 3-node element 

DKT1 (Discrete Kirchhoff triangle) & DKMT2 (Discrete Kirchhoff Mindlin triangle) 

 4-node element 

DKQ3(Discrete Kirchhoff quadrilateral) & DKMQ4(Discrete Kirchhoff Mindlin 

quadrilateral) 

                                            
1 J.L. Batoz, K.J. Bathe and L.W. Ho, “A Study of Three-Node Triangular Plate Bending Elements,” International 

Journal for Numerical Methods in Engineering, Vol. 15, 1771-1812, 1980 

2 I. Katili, “A New Discrete Kirchhoff-Mindlin Element Based on Mindlin-Reissner Plate Theory and Assumed Shear 

Strain Fields – Part I : An Extended DKT Element for Thick-Plate Bending Analysis,” International Journal for 

Numerical Methods in Engineering, Vol. 36, 1859-1883, 1993 

3 J.L. Batoz and M. Ben Tahar, “Evaluation of a New Thin Plate Quadrilateral Element,” International Journal for 

Numerical Methods in Engineering, Vol. 18, 1655-1678, 1982 

4 I. Katili, “A New Discrete Kirchhoff-Mindlin Element Based on Mindlin-Reissner Plate Theory and Assumed Shear 

Strain Fields-Part II : An Extended DKQ Element for Thick-Plate Bending Analysis,” International Journal for 

Numerical Methods in Engineering, Vol. 36, 1885-1908, 1993 
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The “Iso-parametric Element” formulation for the in-plane stiffness is identical to that of the plane 

stress element and will be explained in section “1.5 Plane Stress Element”. The “Element with 

Drilling d.o.f.” option activates rotational d.o.f. around the ECS z-axis 
z  in each of the element 

nodes and these additional rotations contribute to the inplane element displacements u and v . 

 , ,
T

i i i ziu v u          (1.37) 

For an arbitrary point in an element with N  nodes the coordinates x and y and translational 

displacements u and v  can be expressed as follows: 

1

N

i i

i

x N x


 , 
1

N

i i

i

y N y


        (1.38) 

1 1

1
( )( )

8

N N

i i i j i zj zi

i i

u N u P y y  
 

     , 
1 1

1
( )( )

8

N N

i i i j i zj zi

i i

v N v P x x  
 

      

1,2,.., 1, 2,3,.., ,1i N N j N    (1.39) 

where, 
zi  represents the drilling d.o.f. at the node, i and the shape function is expressed as 

follows: 

 

 3-node element 

1 1N     , 
2N  , 

3N      (1.40.a) 

1 4 (1 )P      ,  
2 4P  ,  

3 4 (1 )P           (1.40.b)  

 4-node element 

  1

1
1 1

4
N     ,   2

1
1 1

4
N     ,   3

1
1 1

4
N     ,  

  4

1
1 1

4
N             (1.41.a) 
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2

1

1
(1 )(1 )

2
P     , 2

2

1
(1 )(1 )

2
P     , 2

3

1
(1 )(1 )

2
P     , 

  2

4

1
(1 )(1 )

2
P            (1.41.b) 

 

The relationship between the nodal displacement u and the in-plane strain ε is defined by the 

matrix
iB . 

1

N

i i

i

ε B u          (1.42) 

The matrix 
iB  is defined by the differentials of the shape function: 

( )( )
0

8 8

( )( )
0

8 8

( ) ( )( ) ( )

8 8 8 8

j ii i k k i

i ji k i k i
i

j i i ji i i k k i k i k i

y yN y y P P

x x x

x xN x x P P

y y y

y y x xN N y y P P x x P P

y x y y x x

    
 

   
    

  
   

         
   
       

B   

1,2,.., 1, , 2,3,.., ,1, ,1,.., 2, 1i N N j N k N N N       (1.43) 

Using the matrix
iB , the element stiffness matrix for in-plane deformation is defined as follows:  

( )

e

I T

ij i j
A

t dA K B DB           (1.44) 

where t is the thickness of the shell element and 
eA is the element area 

 

The matrix D represents the relationship between in-plane stress and in-plane strain for isotropic 

materials: 
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2

1 0

1 0
1

1
0 0

2

E







 
 
 

  
  

 
  

D          (1.45) 

Where E is the Young‟s modulus and ν is the Poisson ratio. 

When the “Drilling Element” option is activated, the translational displacements perpendicular to 

the element edges require a third order interpolation as is illustrated in Fig. 1-(16)., which gives 

more accurate results.   

 

Figure 1-(16) Relation between translations and Drilling DOF 

 

The DKMT (3-node) and DKMQ (4-node) element formulations make use of the method of shear 

strain assumption. The element considers only three d.o.f at each node, i.e., the translational 

displacement in the ECS z-direction, w  and the rotational displacements about the ECS x and y-

axes, 
x and y .  

 
T

i i xi yiw  u            (1.46) 

For an arbitrary point in an element with N nodes and coordinates x and y  the rotational 

displacements 
x and y  are defined as follows:  

 
1 1

N N

x i xi i ij ni

i i

N PS  
 

    ,  
1 1

N N

y i yi i ij ni

i i

N PC  
 

          (1.47)   

 /ij ij ijC x L  , /ij ij ijS y L  , ij i jx x x  , ij i jy y y  , 
2 2 2

ij ij ijL x y   

   1,2,.., 1, 2,3,.., ,1i N N j N    
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The shape functions, 
iN  and 

iP  are defined by the equations (1.40) and (1.41). When 

calculating the virtual rotational angle,
ni  at the mid point of an edge, we make the following 

assumptions. 

 

 The equilibrium equations between the shear force and the bending moment should be 

satisfied for N element edges. 

, ,s ns s ns nQ M M         (1.48) 

where n is the local coordinate in the direction normal to the edge and s is the local 

coordinate in the direction tangential to the edge. 

 The rotation around the axis perpendicular to the element edge is represented as a quadratic 

function along the edge, and the rotation around the axis tangential direction to the edge is 

linear along the edge. 

(1 ) 4 (1 )n ni nj ni

ij ij ij ij

s s s s

L L L L
         , (1 )s si sj

ij ij

s s

L L
      

1,2,.., 1, 2,3,.., ,1i N N j N     (1.49) 

 The average shear strain sz  which is calculated from the equation (1.48) and the shear 

strain 
sz  which is directly calculated from the shape functions satisfy the following 

condition: 

0

( ) 0

ijL

szsz ds        (1.50) 

 

Substituting 
ni  obtained from the above assumptions into the equation (1.47), the rotational 

displacements 
x and y  can be expressed in terms of 

iu  as  

1

N
T

x xi i

i




H u  , 
1

N
T

y yi i

i




H u      (1.51) 

where, &xi yiH H are expressed as follows with respect to { wi, θxi, θyi } 
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33

2 (1 ) 2 (1 )
0

33

4 (1 ) 4 (1 )
0

33

4 (1 ) 4 (1 )

i ijk ki

ki ki ij ij

i ij ijk ki ki
xi i

ki ki ij ij

i ij ijk ki ki

ki ki ij ij

PSP S

L L

PS yP S y
N

L L

PS xP S x

L L

 

 

 

 
 

  
   
   

     
    

   
  
   

H    (1.52.a) 

,

33

2 (1 ) 2 (1 )
0

33
0

4 (1 ) 4 (1 )

33

4 (1 ) 4 (1 )

i ijk ki

ki ki ij ij

i ij ijk ki ki
y i

ki ki ij ij

i

i ij ijk ki ki

ki ki ij ij

PCP C

L L

PC yP C y

L L
N

PC xP C x

L L

 

 

 

 
  

  
   
   

      
    

   
 
   

H     (1.52.b) 

2

2

2
( )

(1 )
ij

ij

t

L


 



  (for an isotropic material) 

1,2,.., 1, 2,3,.., ,1 ,1,.., 2, 1i N N j N k N N N       

The relationship between the nodal displacement and the curvature κ  is by the matrix biB : 

1

N

bi i

i

κ B u              (1.53) 

T

yi

T

xi
bi

TT
yixi

x

y

x y

 
 

 
 
 

 
 

 
   

H

H
B

HH

      (1.54) 

The shear deformation γ is calculated using sz  obtained from the equation (1.50). The 

relationship between γ and the nodal displacement is defined by the matrix
siB : 

1

N

si i

i

γ B u        (1.55) 
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 3-node element 

( ) ( )
1(1 ) (1 )

2 2

1( ) ( )
2 2(1 ) (1 )

jk ij ij jkki ki
ij ijj i i k

j i ij ij i k ki ki

si

ki kijk ijki ki
i j k i

i j ij ij k i ki ki

S S SS y xN N N N
A A L A A L

y xSC S S
N N N N

A A L A A L

 

 

 

 

     
   
              

B

               1,2,3 2,3,1 3,1,2i j k   , i ij ki ki ijA C S C S    (1.56) 

 4-node element 

1(1 ) (1 )
2 2

1
2 2(1 ) (1 )

iji k ki
ij ij

ij ki

si

ki kiiji k ki

ij ki

N N y x
x x

y xN N

y y

  

   

  

   

       
       
                   

B    (1.57) 

1,2,3,4 2,3,4,1 4,1,2,3i j k    

1,3

2,4

i

i

i

N
i

xN

Nx
i

x









 
    

 
    

  

  ,  
1,3

2,4

i

i

i

N
i

yN

Ny
i

y









 
    

 
    

  

 (1.58) 

 

Therefore, the element stiffness matrix for bending and shear deformations is defined as follows: 

3
( ) ( )

12e

O T T

ij bi bj si sj
A

t
t dA K B DB B DB      (1.59) 

DKT (3-node) and DKQ (4-node) elements ignore shear deformations. For these two elements the 

discretization as proposed by Kirchhoff-Love is assumed. The element has only three DOF at 

each node, i.e., the translational displacement in the ECS z-direction, w  and the rotational 

displacements around the ECS x and y-axes, 
x and y . Within an element the 

coordinates x and y are defined by the equation (1.38), whereas the rotations
x and y  are 

defined using quadratic functions:   

 
1 1

N N

x i xi i N xi

i i

N N  

 

    , 
1 1

N N

y i yi i N yi

i i

N N  

 

        (1.60) 
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 3-node element 

  1 1 1 2 2N         ,  2 2 1N    ,  3 2 1N     

 4 4 1N      , 
5 4N  ,  6 4 1N        (1.61) 

 4-node element 

  1 5 8

1 1 1
1 1

4 2 2
N N N      ,   2 5 6

1 1 1
1 1

4 2 2
N N N       

  3 6 7

1 1 1
1 1

4 2 2
N N N      ,   4 7 8

1 1 1
1 1

4 2 2
N N N       

  2

5

1
1 1

2
N     ,   2

6

1
1 1

2
N      

  2

7

1
1 1

2
N     ,   2

8

1
1 1

2
N        (1.62) 

 

With respect to the virtual rotational angles 
xi and yi  at the mid-edge point we make 

following assumptions: 

 

 To each node and mid-edge point the conditions of the Kirchhoff-Love theory are applied. 

Node: 0x

w

y



  


, 0y

w

x



 


, Mid-edge point: 0n

w

s



  


 (1.63) 

 The out of plane deflection w is a cubic function along the element edge, and the rotation θ 

around the edge is linear along the element edge. 

 

 
( / 2) ( )3 1 (0) 3 1

2 4 2 4

ij ij

i j

ij ij

w L w Lw
w w

s L s L s

 
    

  
  (1.64) 
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1

( )
2

si si sj     , 1,2,.., 1, 2,3,.., ,1i N N j N       (1.65) 

 

By substituting 
xi and yi obtained from the above assumptions into the equation (1.60), 

x and y  can be expressed in terms of
iu :   

1

N
T

x xi i

i




H u  , 
1

N
T

y yi i

i




H u      (1.66) 

where, xiH and yiH  are:  

3
( )

2
ij i N ki k N

x i ij i N ki k N

ij i N ki k N

d N d N

N e N e N

b N b N

 

 

 

 
  
  

   
 
 
  

H , 

3
( )

2
ij i N ki k N

yi ij i N ki k N

i ij i N ki k N

a N a N

b N b N

N c N c N

 

 

 

 
 

  
  
  
 
  

H  (1.67) 

1,2,.., 1, 2,3,.., ,1 ,1,.., 2, 1i N N j N k N N N       

,ija ,ijb ,ijc ,ijd and ije  are determined by the geometric configuration of the element, which 

are defined as follows: 

2/ij ij ija x L  , 23
/

4
ij ij ij ijb x y L , 2 2 21 1

( ) /
4 2

ij ij ij ijc x y L   

2 2/ij ij ijd y L  , 2 2 21 1
( ) /
4 2

ij ij ij ije y x L       (1.68) 

The relationship between the nodal displacement and the curvature κ  is defined by the equation 

(1.53), and 
biB  is defined by the equation (1.54). Since DKT and DKQ elements ignore shear 

deformations, the element stiffness related to the bending and shearing deformation are defined as 

follows: 

3
( )

12e

O T

ij bi bj
A

t
dA K B DB          (1.69) 

It is possible to define a four-node discrete shell element for which not all the nodes are located on 

a flat plane. When the above formulation is applied to such an element, the geometric 

configuration of the element cannot be represented.  
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In order to resolve this problem, the stiffness correction method proposed by MacNeal5 is used. 

As illustrated in Fig. 1-(17), the stiffness matrix 
PK  calculated on the A B C D    plane 

is transformed into the stiffness K  on the actual plane 1 2 3 4   , using the transformation 

matrix S . 

T

PK S K S         (1.70) 

 

1

A

B

C

D

2

3

4

*h

*h

32
F

23
F

2ZF

z

y

x

 

Figure 1-(17) Warped Geometry of 4 Node Flat Shell Element 

 

The transformation matrix S  is used to transform the forces
PF  at nodes ( A B C D   ) to 

the forces F at nodes (1 2 3 4   ). 

T

PF S F        (1.71) 

 1 2 3 4, , ,
T

T T T T

P P P P PF F F F F        (1.72) 

                                            
5 R.H. MacNeal, Finite Elements : Their Design and Performance, Marcel Dekker Inc., New York, 1994 
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 , , , , ,
T

Pi x y z x y z Pi
F F F M M MF       (1.73) 

The components considered in the calculation of the force transformation matrix are the forces 

and moments in the out-of-plane directions resulting from the angles formed by the edges of the 

element ( A B C D   ) to the plane ( 1 – 2 – 3 – 4 ). 

* 32 23
3 2

23 23

( )z z

F F
F F h

L L
           (1.74) 

* 32 23
3 2

23 23

( )z z

M M
M M h

L L
           (1.75) 

The out-of-plane moment 
ziM  is not directly used in the transformation matrix S ,. 

 

 

(2) Curved Shell 

The formulation of a Curved Shell Element is based on the “solid shell approach” and therefore 

no distinction needs to be made between in-plane and out-of-plane stiffness contributions as is the 

case for discrete shell elements.  

Three vectors 
iV  defined at each node are shown in Fig. 1-(18). V3 is the vector normal to the 

curved shell surface. 
1V  can be calculated by projecting the element‟s local x-axis onto the 

curved surface of the shell. Because the three vectors consitute a right-hand coordinate system 

2V  can be obtained from V1 and V3.   

 1 1 1 1, ,
T

i i i il m nV ,  2 2 2 2, ,
T

i i i il m nV ,  3 3 3 3, ,
T

i i i il m nV    (1.76) 
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Figure 1-(18) Nodal Coordinate System obtained by projecting ECS 

 

The curved shell element has three translational displacements ,u v and w  refering to the ECS 

and two rotations 
1 and

2  around the vectors 
1iV  and

2iV .  

 

 1 2

T

i i i i i iu v w  u         (1.77) 

 

In an element with N nodes the coordinates ,x y  and z  and displacements ,u v  and w  

can be expressed as follows: 

3

1

( )
2

N
i

i i i

i

t
x N x l



  , 3

1

( )
2

N
i

i i i

i

t
y N y m



  , 3

1

( )
2

N
i

i i i

i

t
z N z n



   

(1.78) 

11 1 12 2

1

{ ( )}
2

N
i

i i i i i i

i

t
u N u     



    

21 1 22 2

1

{ ( )}
2

N
i

i i i i i i

i

t
v N v     



      (1.79) 

31 1 32 2

1

{ ( )}
2

N
i

i i i i i i

i

t
w N w     



    

where 
it  is the nodal thickness and 

iμ is the rotation matrix projecting the rotations around 

the Vi direction to the ECS. 
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 6-node element 

  1 1 1 2 2N         ,  2 2 1N    ,  3 2 1N     

 4 4 1N      , 
5 4N  ,  6 4 1N         (1.80) 

 8-node element 

  1 5 8

1 1 1
1 1

4 2 2
N N N      ,   2 5 6

1 1 1
1 1

4 2 2
N N N       

  3 6 7

1 1 1
1 1

4 2 2
N N N      ,   4 7 8

1 1 1
1 1

4 2 2
N N N       

  2

5

1
1 1

2
N     ,   2

6

1
1 1

2
N      

  2

7

1
1 1

2
N     ,   2

8

1
1 1

2
N           (1.81) 

 

The matrix 
iB defines the relation between nodal displacements and the strain 

Gε , 

1

N

G i i

i

ε B u        (1.82) 

where, the strain 
Gε  includes all the components of 3-dimensional strain tensor. 

 , , , , ,
T

G xx yy zz xy yz zx     ε       (1.83) 

The matrix 
iB  is defined as:  
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2, 1,

2, 1,

1

1 2, 1,

1

2, 1,

2, 1,

0 0
2 2

0 0
2 2

0 0 0
2 2

0 0
2 2

0 0 0
2 2

i i i i i
i i

i i i i i
i i

i i
i i i i

i

i i i i i
i i

i i
i i i i

N t N t N
l l

N t N t N
l l

t t
N l N l

N t N t N
m m

t t
N n N n

 
  

 
  

 
  







   
   


  


  

  
     
         




 
 

J 0 0

B H 0 J 0

0 0 J

    
















 

(1.84) 

where H is the Boolean matrix and J is the Jacobian matrix. 

 

The strain 
Gε  is defined in the ECS which is constant for all points in the element. In order to 

transfer the strain 
Gε  onto the curved surface it must be transformed using using the local 

transformation matrix T. In a curved shell element every point in the shell element will have its 

own T. By using the transformation matrix T the stiffness matrix can be defined as follows: 

 

e

T T

ij i j
V

dV K B T DTB        (1.85) 

If the drilling d.o.f. is activated, the formulation of the virtual 

rotational stiffness as proposed by Zienkiewicz and Taylor
6
 is 

applied.  

                                            
6 O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method Vol. 2, McGraw-Hill Book Co., London, 1991 
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1-4-3 Loads and Masses 

 

Loads that can be applied to a shell element are the body force, the pressure load, the edge load, 

the thermal load, etc. The body force represents the self weight or inertia force of an element, and 

the pressure load is a distributed load, which acts on the surface of an element. The edge load is a 

distributed load, which acts along the edges of an element. Both nodal temperature and element 

temperature loads cause in-plane thermal deformation. Temperature gradient load causes bending 

of the shell element. 

 

 Body force 

e

x

i i y
A

z

tN dA







 
 

  
 
 

F         (1.87) 

where , ,x y z   are the weight density vector components. 

 

 Pressure load 

e

x

i i y
A

z

P

N P dA

P

 
 

  
 
 

F         (1.88) 

where , ,x y zP P P are the surface pressure load vector components. 

 

 Edge load 

 

x

i i y
L

z

P

N P ds

P

 
 

  
 
 

F       (1.89) 

where , ,x y zP P P are the edge pressure loadvector components. 
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 Temperature load  

0
e

x

T

i i y
A

t TdA





 
 

  
 
 

F B D      (1.90) 

where ,x y  are the linear thermal expansion coefficients in &x y  directions, 

iB is the matrix of in-plane deformation and ΔT is the temperature change. 

 

 Temperature gradient load 

3

12 2
0

e

x

T z
i bi y

A
z

t T
dA

H





 
 

  
 
 

F B D     (1.91) 

Where /z zT H  is temperature gradient over the thickness of the shell element.. 

 

The mass of a shell element can be represented by lumped mass or consistent mass and reflects 

translational displacements in the x, y and z directions only.  

 

 Consistent mass 

e
ij i j

A
t N N dA M       (1.92)  

where iN is the interpolation function identical to that of a plane stress element  

 Lumped mass 

The total mass ( etA ) of the element is distributed to the diagonal terms only. The 

distribution is done in proportion to the diagonal terms of the consistent mass matrix. The 

lumped mass matrix is a diagonal matrix.   

 

1-4-4 Shell Thickness / Material / Offset 

 

For a discrete shell element, the thickness of the element can be defined at each node as illustrated 

in Fig. 1-(19), whereas the thickness of a curved shell element can only be defined at the vertices 
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of the surface in which the elements are located. Different shell thickness can be specified for in-

plane deformation, bending and shear deformation. With the in-plane thickness t, the following 

values can be defined.  

 

 312 /I t  

being the bending stiffness ratio of the actual bending stiffness I  and the bending 

stiffness calculated by the in-plane thickness (default=1.0) 

 /st t  

being the ratio of the actual shear deformation thickness 
st  and the in-plane 

thickness t  (default=0.83333) 

 

 

1

3

2

1t

2t

3t

 

 

1

2

3

4

1t

2t

3t

4t

 

Figure 1-(19) Definition of Nodal Thickness in Shell Element 
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Material properties of a shell element can be entered for each type of deformation. The mass 

matrix can be calculated using the thickness and material property corresponding to the in-plane 

behavior. For an anisotropic material, the MCS (material coordinate system) can be defined such 

that an axis can be defined in an arbitrary direction. In the case that the MCS is not parallel with 

the curved surface of a shell element, the MCS x-axis is projected onto the shell element as shown 

in Fig. 1-(20). 

 

MCS y- axis

MCS x- axis

MCS

projection

y
z

x

ECS z-axis

ECS y-axis

ECS x-axis

 

Figure 1-(20) Material Coordinate System and axis projection onto Shell Element  

 

As illustrated in Fig. 1-(21), for shell elements offset distances in nodes can be assigned. The 

offset represents the distance from the node (reference plane) to the actual location of the element, 

projected to the ECS z-direction. 
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1

2

3

1z

3z

2z

 

 

1

2

3

4

1z

4z

3z

2z

 

Figure 1-(21) Definition of Offset in Shell Element 
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1-4-5 Element Output 

 

Analysis results for shell elements are element (internal) forces and stresses/strains at the nodes 

with reference to the ECS. The analysis results produced in the ECS can be transferred into the 

GCS or Output Coordinate System. Stresses and strains are calculated at the top end ( / 2z t ) 

and bottom end ( / 2z t  ) surfaces of the shell element.  

 

The internal forces and stresses/strains calculated for shell elements are listed below. 

 

 Stress components  , ,xx yy xy    

 Von-Mises stress   2 2

1 2 1 2P P PP   

 Maximum shear stress 

2

2

2

xx yy

xy

 


 
 

 
 

 Principal stresses  
1 2,P P  

                           

2

2

2 2

xx yy xx yy

i xyP
   


  

   
 

 

 Strain components  , ,xx yy xy    

 Von-Mises strain   2 2

1 2 1 2

2

3
E E E E   

 Volumetric strain  
1 2E E  

 Principal strains   
1 2,E E  
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2 2

2 2 4

xx yy xx yy xy

iE
      

   
 

 

 Membrane forces   , ,xx yy xyN N N  

 Bending moments  , ,xx yy xyM M M  

 Shear forces  ,yz zxQ Q  

 

The nodal internal forces and stresses/strains are calculated by extrapolation from the results 

calculated at the integration points (Gauss Points). The integration schemes for shell elements are 

as follows: 

 

 3-node triangular element:   3-point Gauss integration in plane and 1 layer of 

integration points over thickness 

 4-node quadrilateral element: 4-point Gauss integration in plane and 1 layer of 

integration points over thickness 

 6-node triangular element:   3-point Gauss integration in plane and 2 layers of 

integration points over thickness 

 8-node quadrilateral element: 4-point Gauss integration in plane and 2 layers of 

integration points over thickness 
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The sign convention for stresses and strains is identical to that for a plane stress element. The 

directions of bending moments and shear forces are shown in Fig. 1-(14). Fig. 1-(22) shows the 

sign convention for in-plane components among the element forces. The arrows represent the 

positive (+) directions. 

 

 

xyN

xyN

yyN

xxN

z
y

ECS
x

 

Figure 1-(22) Output Convention for Shell Element  
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1-5 Plane Stress Element 

 

1-5-1 Overview 

 

There are triangular and quadrilateral plane stress elements with three, four, six or eight nodes. 

The element is generally used for membranes which have a uniform thickness. It is assumed that 

no stress components exist in the out-of-plane direction and that the strains in the out-of-plane 

direction can be obtained on the basis of the Poisson‟s effects. The plane stress elements can only 

account for in-plane deformations and may be used for both static (linear & nonlinear) and 

dynamic analyses. The stress and strain tensors in a plane stress element have 3 components 

respectively: 

xx

yy

xy







 
 

  
 
 

σ ,   

xx

yy

xy







 
 

  
 
 

ε   (In-plane stress & strain) 

Fig. 1-(23) shows the sign convention for stresses and strains, and the arrows represent the 

positive (+) directions.  

 

Figure 1-(23) Stress Sign Convention for Plane Stress Element 
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The ECS is a Cartesian coordinate system. The directions of the ECS axes are defined in Fig. 1-

(24). For a triangular element, the line parallel to the direction from N1 to N2 becomes the ECS x-

axis. For a quadrilateral element, the line connecting the mid point of N1 and N4 to the mid point 

of N2 and N3 defines the direction of ECS x-axis.  

1

2

3

ECS z-axis

ECS y-axis

ECS x-axis

(1 →2 direction)

 

ECS z-axis

ECS y-axis

ECS x-axis

1

2

3

4
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1

4

5

6

2

3

ECS z-axis

ECS y-axis

ECS x-axis
(1 →2 direction)

 

8 7

5
6

ECS z-axis

ECS y-axis

ECS x-axis

1

2

3

4

 

 

Figure 1-(24) Element Coordinate System for Plane Stress Element 

 

Plane stress elements can have a “Linear Interpolation” or a “Quadratic Interpolation”, depending 

on the number of nodes. Three-node triangular and four-node quadrilateral plane stress elements 

are referred to as “Linear Elements”. Six-node triangular and eight-node quadrilateral plane stress 

elements are referred to as “Quadratic Elements”. Four-node quadrilateral linear elements 

generally lead to accurate results for the computation of both displacements and stresses, whereas 

three-node triangular linear elements may give poor stress results and good displacement results. 

Therefore, it is advised to avoid three-node triangular linear elements in the regions where 

detailed analysis results are required. 
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1-5-2 Finite Element Formulation 

 

It is assumed that a plane stress element has a uniform thickness. The plane stress element is an 

Isoparametric element, and for the four node quadrilateral the Incompatible Mode theory is 

applied. Each node of the element has two translational displacements u  and v  in the ECS.  

 
T

i i iu vu      (1.93) 

The calculation of the stiffness is identical to all plane stress elements, except for the four node 

quadrilateral element. Therefore, an explanation on N-node elements will be provided 

representing all other cases.  

In an element the coordinates x and y  and translational displacements u and v  can be 

expressed as,                            

1

N

i i

i

x N x



, 1

N

i i

i

y N y



, 1

N

i i

i

u N u



, 1

N

i i

i

v N v



  (1.94) 

 

 3 node triangular element 

1 1N    
, 2N 

, 3N 
    (1.95) 

 4 node quadrilateral element 

  1

1
1 1

4
N     ,   2

1
1 1

4
N       

  3

1
1 1

4
N     ,   4

1
1 1

4
N        (1.96) 

 6 node triangular element 

  1 1 1 2 2N        
, 

 2 2 1N   
, 

 3 2 1N   
 

 4 4 1N     
, 5 4N 

, 
 6 4 1N     

  (1.97) 
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 8 node quadrilateral element 

  1 5 8

1 1 1
1 1

4 2 2
N N N      ,   2 5 6

1 1 1
1 1

4 2 2
N N N       

  3 6 7

1 1 1
1 1

4 2 2
N N N      ,   4 7 8

1 1 1
1 1

4 2 2
N N N       

  2

5

1
1 1

2
N     ,   2

6

1
1 1

2
N     ,   2

7

1
1 1

2
N      

  2

8

1
1 1

2
N          (1.98) 

 

The matrix 
iB  defines the relation between the nodal displacement u  and the strain ε : 

1

N

i i

i

ε B u      (1.99) 

The matrix 
iB  can be presented by the differential of the shape function: 

0

0

i

i
i

i i

N

x

N

y

N N

y x

 
 
 

 
  

 
  
 
   

B      (1.100) 

Using
iB , the element stiffness matrix related to in-plane deformation can be arranged as follows:  

 
e

T

ij i j
A

t dA K B DB      (1.101) 

where t is the thickness of the plane stress element and 
eA  is the element area, and 

matrix D represents the stress - strain relation. For an isotropic material the stress – strain relation 

is expressed as follows: 
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2

1 0

1 0
1

1
0 0

2

E







 
 
 

  
  

 
  

D     (1.102) 

In linear analysis, a four node quadrilateral element is formulated using incompatible modes. 

When incompatible modes are used, the element has extra d.o.f. in addition to the nodal 

displacements. 

 1 1 2 2

T

a a b a bu     (1.103) 

In that case the coordinates x and y  and the translational displacements u and v  are: 

4

1

i i

i

x N x


 , 
4

1

i i

i

y N y


 , 
4

1 1 2 2

1

i i

i

u N u a P a P


   , 
4

1 1 2 2

1

i i

i

v N v b P b P


    

      (1.104) 

The shape functions representing the incompatible modes are: 

2

1 1P   , 2

2 1P       (1.105) 

Combining the nodal displacements and the incompatible modes, the strain ε  is defines as: 

4

1

i i a a

i

 ε B u B u      (1.106) 

The matrix 
iB  is presented in the equation (1.106), and the matrix

aB that relates the 

incompatible modes to the strain components is defined as: 

1 2

1 2

1 1 2 2

0 0

0 0a

P P

x x

P P

y y

P P P P

y x y x

  
 
  

  
  

  
    
 
     

B     (1.107) 

Using the matrices 
iB  and

aB , the element stiffness matrices for in-plane deformation can be 
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calculated, and four matrices are obtained as follows: 

 
e

T

ij i j
A

t dA K B DB , 
e

T

ia i a
A

t dA K B DB  

e

T

ai a i
A

t dA K B DB , 
e

T

aa a a
A

t dA K B DB    (1.108) 

The four stiffness matrices presented in the equation (1.108) have the following relation: 

 
   ij ia j i

aj aa a

                  
         

K K u F

0K K u
    (1.109) 

The stiffness matrix of the incompatible modes is obtained by static condensation:   

 
1

ij ij ia aa aj

             K K K K K     (1.110) 

Incompatible modes can account for the bending deformation as shown in Fig. 1-(25) and 

therefore such elements have a better performance for bending deformations than plane stress 

elements without incompatible modes.. 

 

    

Figure 1-(25) Typical Shapes of Incompatible Mode 
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1-5-3 Loads and Masses 

 

Loads that can be applied to plane stress elements include are the body force, the pressure load, 

the edge load, the thermal load, etc. The body force is a load, which represents the self weight or 

the inertia force of an element. The pressure load is a distributed load, which acts on the surface of 

an element. The edge load is a distributed load, which acts along the edge of an element. Nodal 

temperature and element temperature loads cause in-plane thermal deformation.  

 

 Body force 

e

x

i i y
A

z

t N dA







 
 

  
 
 

F      (1.111) 

where , ,x y z   are weight density vector components. 

 

 Pressure load 

0
e

x

i i y
A

P

N P dA

 
 

  
 
 

F      (1.112) 

where ,x yP P are surface pressure load vector components. Note that the pressure 

component normal to the elements must be equal to zero for plane stress elements. 

 

 Edge load 

0

x

i i y
L

P

N P ds

 
 

  
 
 

F      (1.113) 

where ,x yP P  are edge pressure load vector components. Note that the pressure 

component normal to the elements must be equal to zero for plane stress elements. 
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 Temperature load     

0
e

x

T

i i y
A

t TdA





 
 

  
 
 

F B D     (1.114) 

where ,x y  are the linear thermal expansion coefficient in x  and y  directions   

 

 

The mass of a plane stress element can be a lumped mass or a consistent mass and reflects 

translational displacements in the x, y and z directions only.    

 

 Consistent mass 

e
ij i j

A
t N N dA M      (1.115) 

 

 Lumped mass   

The total mass ( etA ) of the element is distributed to the diagonal terms only in proportion to 

the diagonal terms of the consistent mass matrix. The lumped mass matrix is a diagonal matrix. 
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1-5-4 Element Output 

 

Analysis results for plane stress elements include stresses and strains at each node with reference 

to the ECS. The analysis results calculated in the ECS can be transformed into the GCS or Output 

Coordinate System. The stresses and strains produced for a plane stress element are as follows: 

 

 Stress components  , ,xx yy xy    

 Von-Mises stress    2 2

1 2 1 2P P PP   

 Maximum shear stress 

2

2

2

xx yy

xy

 


 
 

 
 

 Principal stresses  
1 2,P P  

                           

2

2

2 2

xx yy xx yy

i xyP
   


  

   
 

 

 Strain components  , ,xx yy xy    

 Von-Mises strain   2 2

1 2 1 2

2

3
E E E E   

 Volumetric strain  
1 2E E  

 Principal strains  
1 2,E E  and E3 = εzz 

                          

2 2

2 2 4

xx yy xx yy xy

iE
      

   
 
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Stress and strain results in the nodes are extrapolated from the calculated results at integration 

points (Gauss Points). The integration points for a plane stress element are as follows: 

 

 3 node triangular element:   1-point Gauss integration 

 4 node quadrilateral element: 4-point Gauss integration 

 6 node triangular element:   3-point Gauss integration 

 8 node quadrilateral element: 9-point Gauss integration 

 

Plane stress elements have only one layer of integration points over the thickness. 

Fig. 1-(23) shows the sign convention for stresses and strains. 
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1-6 Plane Strain Element 

 

1-6-1 Overview 

 

There are triangular and quadrilateral plane strain elements with three, four, six or eight nodes. 

The plane strain element can be used to model a long structure, having a uniform cross section 

along its entire length, such as dams and tunnels. No strain is assumed in the thickness direction, 

and the stress component in the thickness direction can be obtained through the Poisson‟s effect. 

The plane strain element is capable of accounting for in-plane stresses only and can be used for 

both static (linear & nonlinear) and dynamic analyses. The stresses and strains defining the 

deformation of a plane strain element are expressed as follows: 

xx

yy

xy







 
 

  
 
 

σ , 

xx

yy

xy







 
 

  
 
 

ε   (In-plane stress & strain) 

Fig. 1-(26) shows the sign convention for stresses and strains and the arrows represent the positive 

(+) directions. 

 

y

x

,xy xy 

,xy xy 

,xx xx 

,yy        yy   

Figure 1-(26) Stress Sign Convention for Plane Strain Element  



 

 

We Analyze and Design the Future 67 

Analysis and Algorithm Manual 
m

id
a

s 
F

E
A

 

The directions of the ECS axes are defined in Fig. 1-(27). For a triangular element, the ECS x-axis 

is parallel to the direction from Node 1 to Node 2. In the case of a quadrilateral element, the line 

connecting the mid point of Node 1 and Node 4 to the mid point of N2 and N3 is the direction of 

ECS x-axis.  
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Figure 1-(27) Element Coordinate System for Plane Strain Element 

 

There are plane strain elements with “Linear Interpolation” and with “Quadratic Interpolation”. 

Three-node triangular and four-node quadrilateral elements are “Linear Elements”. Six-node 

triangular and eight-node quadrilateral elements are “Quadratic Elements”. Four-node 

quadrilateral elements generally lead to accurate displacement and stress results, whereas three-

node triangular elements tend to produce poor accuracy of stresses while the displacement results 

are good. Therefore, it is advised not to use three-node triangular elements in the regions where 

detailed analysis results are required. The plane strain element does not have strain in the out-of-

plane direction but it has the stress component 
zz  in that direction. 
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1-6-2 Finite Element Formulation 

 

The plane strain element is formulated according to the Isoparametric Formulation, and the 

Incompatible Mode theory is used for the four node quadrilateral element. The standard 

isoparametric plane strain formulation procedure is identical to the formulation for the plane stress 

element, which is explained in section “1.5 Plane Stress Element”. 

 

For an isotropic material, the stress-strain relationship for the plane stain element is expressed as, 

 
  

 

1 0
1

1
1 0

1 1 2 1

1 2
0 0

2 1

E




 

  





 
 

 
  

  
   

 
 

  

D    (1.116) 

The displacement d.o.f.‟s are defined in the plane of the element, but an additional stress-

component σzz exists in the direction of the thickness. For an isotropic material, the stress in the 

thickness direction can be calculated as follows: 

 zz xx yy          (1.117) 

In midas FEA the user is required to define a thickness for plane strain elements. This parameter 

isonly used to calculate the nodal forces from the typical forces per unit length which are 

characteristic for plane strain elements. In order to be able to connect e.g. plane strain elements 

such as beams, forces need to be calculated to chacke the equilibrium. 
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1-6-3 Loads and Masses 

 

Loads that can be applied to a plane strain element are the body force, the edge load, the thermal 

load, etc. The body force is the self weight or the inertia force of an element. The edge load is a 

distributed load acting along the edge of an element. Nodal temperature and element temperature 

loads are available for thermal expansion effects. The body force, edge load and thermal load are 

identical to that for the plane stress element.  

 

The mass of a plane strain element can be represented by lumped mass or consistent mass and 

comprises translational displacements in the x and y directions only. 

 

 Consistent mass 

e
ij i j

A
t N N dA M      (1.118) 

 Lumped mass     

The total mass ( etA ) of the element is distributed to the diagonal terms only in 

proportion to the diagonal terms of the consistent mass matrix. The lumped mass matrix is a 

diagonal matrix. 
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1-6-4 Element Output 

 

Analysis results for plane strain elements include stresses and strains at each node. Analysis using 

plane strain elements is carried out in the GCS X Y , Y Z  or X Z  plane, and 

accordingly, the stress and strain results are produced in the GCS. The analysis results produced in 

the GCS can be converted into the ECS or to the Output Coordinate System. 

 

When the analysis is carried out in the X Y  plane, the stresses and strains produced for the 

element are as follows: 

 

 Stress components  , , ,XX YY ZZ XY     

 Von-Mises stress   2 2 2

1 2 3 1 2 2 3 3 1P P P PP P P P P      

 Mean stress  1 2 3

3

P P P 
 

 Maximum shear stress 
1 2 2 3 3 1max( , , )

2

P P P P P P  
 

 Principal stresses  
1 2 3, ,P P P  

2

2

2 2

XX YY XX YY
i XYP

   


  
   

 
and 

ZZ  are denoted as  

     
1 2,  P P and

3P  in a descending order.     

 Strain components  , ,XX YY XY    

 Von-Mises strain   2 2 2

1 2 3 1 2 2 3 3 1E E E E E E E E E      



 

 

Chapter 1  |  Structural Elements 

m
id

a
s 

F
E

A
 

72 We Analyze and Design the Future 

 Volumetric strain  
1 2 3E E E   

 Principal strains   
1 2 3, ,E E E  

2 2

2 2 4

XX YY XX YY XY
iE

      
   

 
and 0 (zero) are denoted as 

1 2,  E E and
3E  in a descending order.      

 

The integration points for a plane strain element are as follows: 

 

 3 node triangular element:    1-point Gauss integration 

 4 node quadrilateral element:  4-point Gauss integration 

 6 node triangular element:    3-point Gauss integration 

 8 node quadrilateral element:  9-point Gauss integration 

 

Plane strain elements have only 1 layer of integration points. 

Fig. 1-(28) shows the sign convention for stresses and strains, and the arrows represent the 

positive (+) directions. 

 

Figure 1-(28) Output Sign Convention for Plane Strain Element 
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1-7 Axisymmetric Element 

 

1-7-1 Overview 

 

Axisymmetric elements can be used for modeling a structure with an axial symmetry with respect 

to the geometry, material properties and loading conditions, such as a deep well, a circular 

foundation, a circular tunnel, etc. The element cannot be used in connection with any other types 

of elements and can be used for both static (linear/nonlinear) and dynamic analyses. Because this 

element is formulated on the basis of its axisymmetric properties, it is assumed that 

circumferential shear strains and circumferrential shear stresses do not exist. The stresses and 

strains of an axisymmetric element are defined as follows:  

 

xx

yy

zz

xy









 
 
 

  
 
 
 

σ , 

xx

yy

zz

xy









 
 
 

  
 
 
 

ε  (In-plane sectional stress/strain & circumferential stress/strain) 

Fig. 1-(29) shows the sign convention for stresses and strains and the arrows represent the positive 

(+) directions. 

 

Figure 1-(29) Sign Convention for Axisymmetric Element  
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The directions of the ECS axes are defined in Fig. 1-(30). For a triangular element, the ECS x-axis 

is parallel to the direction from Node 1 to Node 2. In the case of a quadrilateral element, ECS x-

axis is defined by the line connecting the mid point of Node 1 and Node 4 to the mid point of 

Node 2 and Node 3.  
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Figure 1-(30) Element Coordinate System for Axisymmetric element 
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The GCS Z-axis is always the axis of rotation and the elements must be defined in the global X-Z 

plane. By default, the width of the element is automatically preset to a unit width (1.0radian )  

as illustrated in Fig. 1-(31). 

 

 

Figure 1-(31) Unit width of an axisymmetric element 

 

There are axisymmetric elements with a “Linear Interpolation” and with a “Quadratic 

Interpolation”. Three-node triangular and four-node quadrilateral elements are “Linear Elements”. 

Six-node triangular and eight-node quadrilateral elements are “Quadratic Elements”. Please note 

that axisymmetric elements have a stress and strain component in the circumferential direction. 
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1-7-2 Finite Element Formulation 

 

Axisymmetric elements are defined as regular isoparametric elements without incompatible 

modes. At each node of the element there are two translational displacements u and v  in the 

ECS x and y-directions.  

 
T

i i iu vu      (1.119) 

For all axisymmetric elements the stiffness is defined in the same way. Therefore, the generalized 

number of nodes (N) is assumed in the following formulation of axisymmetric elements.  

 

In the element the coordinates  x and y  and translational displacements  u  and  v can be 

expressed as follows:      

1

N

i i

i

x N x


 , 
1

N

i i

i

y N y


 , 
1

N

i i

i

u N u


 , 
1

N

i i

i

v N v


   (1.120) 

 

 3 node triangular element 

1 1N     , 
2N  , 

3N      (1.121) 

 4 node quadrilateral element 

  1

1
1 1

4
N     ,   2

1
1 1

4
N     ,  

  3

1
1 1

4
N     ,   4

1
1 1

4
N        (1.122) 

 6 node triangular element 

  1 1 1 2 2N         ,  2 2 1N    ,  3 2 1N     

 4 4 1N      , 
5 4N  ,  6 4 1N        (1.123) 
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 8 node quadrilateral element 

  1 5 8

1 1 1
1 1

4 2 2
N N N      ,   2 5 6

1 1 1
1 1

4 2 2
N N N       

  3 6 7

1 1 1
1 1

4 2 2
N N N      ,   4 7 8

1 1 1
1 1

4 2 2
N N N       

  2

5

1
1 1

2
N     ,   2

6

1
1 1

2
N     ,   2

7

1
1 1

2
N      

  2

8

1
1 1

2
N          (1.124) 

 

The matrix 
iB  defines the relationship between the nodal displacements and the strain tensor ε : 

1

N

i i

i

ε B u      (1.125) 

 

The matrix 
iB  is defined by the differtials of the shape function: 

0

0

i

i

i

i i

i i

N

x

N

y

N N

X X

N N

y x

 

 
 
 

 
 
 
 
 
 
  

    

B      (1.126) 

where,   = x X
 

 and   = y X
 

  

 

The inproduct of the ECS x coordinate and the GCS X coordinate represents the distance of the 

point to the GCS Z-axis. This distance is called the radius. 
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Using the matrix 
iB , the element stiffness matrix related is defined as,  

e

T

ij i j
A

X dA K B DB
     (1.127) 

For an isotropic material, the stress-strain relationship for an axisymmetric element is expressed 

as, 

 
  

 

1 0
1 1

1 0
1 1 1

1 1 2 1 0
1 1

1 2
0 0 0

2 1

E

 

 

 

  

  

 





 
  
 
 
   
 

   
  
 

 
   

D   (1.128) 
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1-7-3 Loads 

 

The following loads can be applied to an axisymmetric element: body force, edge load, thermal 

load, etc. The body force represents the self weight or inertia force of an element, and the edge 

load is a distributed load, which acts along the edges of an element. The pressure load and edge 

load are applied to the normal direction to the edge of an element. Nodal temperature and element 

temperature loads cause thermal deformation. Please note that the edge load acting on an 

axisymmetric element is defined as force per unit circumferrence and be aware that when nodal 

loads are specified, the nodal loads are considered to have been integrated over the full 

circumference ( 2 r ). 

 

 Body force 

e

x

i i y
A

z

XN dA







 
 

  
 
 

F      (1.129) 

where , ,x y z   are weight density vector components.  

 

 Edge load 

x

i i y
L

z

P

XN P ds

P

 
 

  
 
 

F

     (1.130) 

where , ,x y zP P P are edge load vector components. For axisymmetric elements the Py 

component must be equal to zero. 

 

 Temperature load     

0

e

x

yT

i i
A

z

X TdA







 
 
 

  
 
  

F B D     (1.131) 
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where ,x y  ,αz are the linear thermal expansion coefficients in x, y and z directions.   
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1-7-4 Element Output 

 

Analysis results for axisymmetric elements are stresses and strains at each node of the element. 

The symmetry axis for axisymmetric elements is the GCS Z-axis and the element can only deform 

in the X Z plane. Therefore, stress and strain results are produced in the GCS. The analysis 

results produced in the GCS can be converted into the ECS or the Output Coordinate System. 

Stresses and strains produced for the element are as follows: 

 

 Stress components  , , ,XX YY ZZ ZX     

 Von-Mises stress   2 2 2

1 2 3 1 2 2 3 3 1P P P PP P P P P      

 Mean stress  1 2 3

3

P P P 
 

 Maximum shear stress 
1 2 2 3 3 1max( , , )

2

P P P P P P  
   

 Principal stresses  
1 2 3, ,P P P  

2

2

2 2

XX ZZ XX ZZ
i ZXP

   


  
   

 
and 

YY  are denoted as 
1 2,  P P  

and
3 P  in a descending order. 

 Strain components  , , ,XX YY ZZ ZX     

 Von-Mises strain   2 2 2

1 2 3 1 2 2 3 3 1

2

3
E E E E E E E E E      

 Volumetric strain  
1 2 3E E E   
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 Principal strains  
1 2 3, ,E E E  

2 2

2 2 4

ZZ XX ZZ ZX
iE

      
   

 

XX and 
YY  are denoted as 

1 2,  E E  

and
3 E in a descending order.     

 

The stress and strain results at nodes are extrapolated from the integration points. The integration 

points for an axisymmetric element are as follows: 

 

 3-node triangular element:   1-point Gauss integration 

 4-node quadrilateral element: 4-point Gauss integration 

 6-node triangular element:   3-point Gauss integration 

 8-node quadrilateral element: 9-point Gauss integration 

 

Fig. 1-(32) shows the sign convention for stresses and strains and the arrows represent the positive 

(+) directions. 

 

 

Figure 1-(32) Output Convention of Axisymmetric Element 
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1-8 Solid Element 

 

1-8-1 Overview 

 

Solid elements are generally used to model voluminous structures such as concrete foundations, 

car engines, thick walls, rubbers, etc. A solid element may be a tetrahedron, pentahedron or 

hexahedron. The solid element can be used for both static (linear & nonlinear) and dynamic 

analyses. The solid element has the following stress and strain tensors:  

xx

yy

zz

xy

yz

zx













 
 
 
 
 

  
 
 
 
  

σ
,   

xx

yy

zz

xy

yz

zx













 
 
 
 
 

  
 
 
 
  

ε
  (Stress & strain) 

The sign convention for stresses and strains is shown in Fig. 1-(33) and the arrows represent the 

positive (+) directions. 

 

 

Figure 1-(33) Stress Sign Convention for Solid Element  
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The directions of the ECS axes are defined in Fig. 1-(34). In the case of a hexahedron, the line 

connecting the mid point of Node 1 and Node 4 to the mid point of Node 2 and Node 3 defines the 

direction of the ECS x-axis. For a tetrahedron or pentahedron, the line parallel to the direction 

from Node 1 to Node 2 is the ECS x-axis. 

 

 

 

Figure 1-(34) Element Coordinate System for Solid Element 

 

The solid element has a linear or a quadratic shape function. 8-node hexahedron, 6-node 
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pentahedron and 4-node tetrahedron are “Linear” elements.  20-node hexahedron, 15-node 

pentahedron and 10-node tetrahedron are “Quadratic” elements. Linear hexahedron elements 

generally lead to more accurate stress and strain results results than linear tetrahedron and linear 

pentahedron. Therefore, it is advised to use linear hexahedron elements or quadratic elements in 

the model parts where detailed analysis results are required. 

 



 

 

We Analyze and Design the Future 87 

Analysis and Algorithm Manual 
m

id
a

s 
F

E
A

 

1-8-2 Finite Element Formulation 

 

The solid element is formulated as an isoparametric element, and the Incompatible Modes theory 

is used for 8-node hexahedron and 6-node pentahedron. Solid elements only have translational 

displacements ,u v  and w in the ECS ,x y  and z  directions in each node. 

 
T

i i i iu v wu      (1.132) 

For all solid elements the calculation of the stiffness is identical, except for elements with 

incompatible modes. In this paragraph N indicates the number of nodes of the element. 

 

In the element the coordinates ,x y  and z  and displacements ,u v  and w can be 

expressed as follows: 

1

N

i i

i

x N x


 , 
1

N

i i

i

y N y


 , 
1

N

i i

i

z N z


   

1

N

i i

i

u N u


 , 
1

N

i i

i

v N v


 , 
1

N

i i

i

w N w


    (1.133) 

 4-node tetrahedron 

1 1N       , 
2N  , 

3N  , 
4N     (1.134) 

 6-node pentahedron 

 1 1
2

N


  ,  2 1
2

N


  ,  3 1
2

N


  ,  4 1
2

N


   

 5 1
2

N


  ,  6 1
2

N


      (1.135) 

1      
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 8-node hexahedron 

   1

1
1 1 1

8
N       ,    2

1
1 1 1

8
N        

   3

1
1 1 1

8
N       ,    4

1
1 1 1

8
N        

   5

1
1 1 1

8
N       ,    6

1
1 1 1

8
N        

   7

1
1 1 1

8
N       ,    8

1
1 1 1

8
N        (1.136) 

 10-node tetrahedron 

 1 1 2N     ,  2 1 2N     ,  3 1 2N     ,  4 1 2N      

5 4N  , 
6 4N  , 

7 4N  , 
8 4N  , 

9 4N  , 
10 4N  (1.137) 

1        

 15-node pentahedron  

   1 1 2 1
2

N


     ,    2 1 2 1
2

N


     ,    3 1 2 1
2

N


      

   4 1 2 1
2

N


      ,    5 1 2 1
2

N


       

    6 1 2 1
2

N


       

 7 2 1N     ,  8 2 1N      

 9 2 1N     ,  10 2 1N     
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 11 2 1N    ,  12 2 1N    ,   2

13 1 1N        

 2

14 1N    ,  2

15 1N       (1.138) 

1      

 20-node hexahedron  

    1

1
1 1 1 2

8
N             

    2

1
1 1 1 2

8
N               

    3

1
1 1 1 2

8
N             

    4

1
1 1 1 2

8
N               

    5

1
1 1 1 2

8
N             

    6

1
1 1 1 2

8
N               

    7

1
1 1 1 2

8
N             

    8

1
1 1 1 2

8
N               

   2

9

1
1 1 1

4
N       ,    2

10

1
1 1 1

4
N        

   2

11

1
1 1 1

4
N        
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   2

12

1
1 1 1

4
N       ,    2

13

1
1 1 1

4
N        

   2

14

1
1 1 1

4
N        

   2

15

1
1 1 1

4
N       ,    2

16

1
1 1 1

4
N        

   2

17

1
1 1 1

4
N        

   2

18

1
1 1 1

4
N       ,    2

19

1
1 1 1

4
N        

   2

20

1
1 1 1

4
N           (1.139) 

 

The matrix 
iB defines the relation between the nodal displacements u and the strain tensor ε : 

1

N

i i

i

ε B u      (1.140) 

The matrix 
iB  is defined by the differentials of the shape function: 

0 0

0 0

0 0

0

0

0

i

i

i

i

i i

i i

i i

N

x

N

y

N

z

N N

y x

N N

z y

N N

z x

 
 


 
 

 
 
  
 

 
  
  
 
  
 

  
  
 
   

B     (1.141) 

Using the matrix
iB , the element stiffness matrix n can be defined:  
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e

T

ij i j
V

dV K B DB     (1.142) 

where 
eV  is the element volume 

The matrix D represents the relationship between the stress and the strain tensor. For isotropic 

materials, D  is: 

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

2(1 )(1 2 )
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

E

  

  

  



 




 
 

 
 
 

 
  

   
 

 
 
 
  

D  (1.143) 

Where E is the Young‟s modulus and ν is the Poisson ratio. Orthotropic materials can be defined 

in the Material Coordinate System MCS. 

 

In the case of linear analysis, incompatible modes are applied in the stiffness definition of the 6-

node pentahedron and the 8-node hexahedron. Elements with incompatible modes have extra 

d.o.f.‟s in addition to the nodal displacements. The incompatible modes for solid elements are 

similar to plane stress elements. Therefore in this paragraph only the incompatible mode shapes 

and some matrices are outlined. 

 

 6-node pentahedron 

 1 1 1

T

a a b cu      (1.144) 

6

1 1

1

i i

i

u N u a P


 
, 

6

1 1

1

i i

i

v N v b P


 
, 

6

1 1

1

i i

i

w N w c P


 
 (1.145) 

2

1 1P  
     (1.146) 
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1

1

1

1 1

1 1

1 1

0 0

0 0

0 0

0

0

0

a

P

x

P

y

P

z

P P

y x

P P

z y

P P

z x

 
 
 

 
 
 

 
 
 
  
  
 

  
  
 
  
    

B     (1.147) 

 8-node hexahedron  

 1 1 1 2 2 2 3 3 3

T

a a b c a b c a b cu   (1.148) 

8

1 1 2 2 3 3

1

i i

i

u N u a P a P a P


   
, 

8

1 1 2 2 3 3

1

i i

i

v N v b P b P b P


   
 

8

1 1 2 2 3 3

1

i i

i

w N w c P c P c P


   
    (1.149) 

2

1 1P   , 2

2 1P   , 2

3 1P      (1.150) 

1 2 3

1 2 3

1 2 3

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

a

P P P

x x x

P P P

y y y

P P P

z z z

P P P P P P

y x y x y x

P P P P P P

z y z y z y

P P P P P P

z x z x z x

   
   
 

   
   
 

   
   
 
      
      
 

      
      
 
     
       

B




 (1.151)
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1-8-3 Loads and Masses 

The following loads can be applied to solid elements: the body force, the pressure load, the 

thermal load, etc. The body force represents the self weight or inertia force on an element, and the 

pressure load is a distributed load, which acts on the surface of an element. The types of 

temperature loads include nodal temperature and element temperature loads may be applied.  

 

 Body force 

e

x

i i y
V

z

N dV







 
 

  
 
 

F      (1.152) 

where , ,x y z   are the weight density vector components. 

 

 Pressure load 

e

x

i i y
A

z

P

N P dA

P

 
 

  
 
 

F      (1.153) 

where , ,x y zP P P are the pressure load vector components. 

 

 Temperature load     

e

x

T

i i y
V

z

TdV







 
 

  
 
 

F B D      (1.154) 

where , ,x y z   are the linear thermal expansion coefficients in ,   x y and  z  

directions   

 

The mass of a solid element can be represented by lumped mass or consistent mass and reflects 

translational displacements in the x, y and z directions only.  
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 Consistent mass 

e
ij i j

V
N N dV M      (1.155) 

 

 Lumped mass 

 

The total mass ( eV ) of the element is only distributed to the diagonal terms in proportion 

to the diagonal terms of the consistent mass matrix. The lumped mass matrix is a diagonal 

matrix. 
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1-8-4 Element Output 

 

The analysis results for a solid element include stresses and strains in the nodes of an element 

with reference to the GCS. The analysis results produced in the GCS can be converted into the 

ECS or Output Coordinate System. The stresses and strains produced for a solid element are as 

follows: 

 

 Stress components          , , , , ,XX YY ZZ XY YZ ZX       

 Von-Mises stress          2 2 2

1 2 3 1 2 2 3 3 1

2

3
E E E E E E E E E      

 Mean stress               1 2 3

3

P P P 
 

 Maximum shear stress     
1 2 2 3 3 1max( , , )

2

P P P P P P  
   

 Principal stresses            
1 2 3, ,P P P  

The solutions of det 0

XX i XY ZX

XY YY i YZ

ZX YZ ZZ i

P

P

P

  

  

  

 
 

  
  

 are denoted as 
1 2,   P P  

and
3 P in a descending order.     

 Strain components          , , , , ,X X Y Y Z Z X Y Y Z Z X      

 Von-Mises strain           2 2 2

1 2 3 1 2 2 3 3 1E E E E E E E E E      

 Volumetric strain           
1 2 3E E E   
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 Principal strains            
1 2 3, ,E E E  

The solutions of 

/ 2 / 2

det / 2 / 2 0

/ 2 / 2

XX i XY ZX

XY YY i YZ

ZX YZ ZZ i

E

E

E

  

  

  

 
 

  
  

 are denoted as
1 2,   E E and

3 E in a 

descending order.           

 

For calculation of the strains and stresses at the nodes, the results calculated at the integration 

points (Gauss Points) are extrapolated. The integration points for a solid element are as follows: 

 

 4-node tetrahedron:   1-point Gauss integration 

 6-node pentahedron:   6-point Gauss integration 

 8-node hexahedron:   8-point Gauss integration 

 10-node tetrahedron:   4-point Gauss integration 

 15-node pentahedron:  9-point Gauss integration 

 20-node hexahedron:   27-point Gauss integration 

 

Fig. 1-(35) shows the sign convention for stresses and strains, and the arrows represent the 

positive (+) directions. 
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Figure 1-(35) Output Sign Convention for Solid Element 
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1-9 Spring 

 

1-9-1 Elastic Link 

 

An elastic link connects two nodes and its stiffness is defined by the user. The elastic link only 

accounts for the stiffness which has to be defined by the user in the ECS. Fig. 1-(39) presents the 

directions of the ECS axes. An elastic link may be assigned as tension-only or compression-only. 

An elastic link is composed of three translational and three rotational stiffnesses. The translational 

and rotational stiffnesses of an elastic link element are expressed in terms of unit force per unit 

length and unit moment per unit radian respectively.  

 

Examples for elastic link elements are elastic bearings of a bridge structure, connecting the bridge 

deck and the piers. Compression-only elastic link elements can be used to model soil boundary 

conditions. The rigid link option connects two nodes with an “infinite” stiffness.  

 

 

Figure 1-(39) Element Coordinate System of Elastic Link 
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1-9-2 Point Spring/Damping 

 

Point springs are used to define the elastic stiffness of adjoining structures or ground support 

conditions. They are also used to prevent singular errors from occurring at the connecting nodes 

of elements with limited degrees of freedom, such as truss, plane stress, etc.  

 

Point spring at a node can be expressed in six degrees of freedom: three translational and three 

rotational components with respect to the GCS. The translational and rotational spring stiffnesses 

are defined in unit force per unit length and unit moment per unit radian respectively. When using 

point springs for modelling sub-soil for foundation supports, the spring stiffness can be calculated 

as the product of Young‟s modulus of su-bsoil and the effective areas of the corresponding node 

devided by the effective deformation of the soil in depth.  

 

Point damping defines a damping spring at a node. The point damping can be mainly used to 

model viscous damping boundary conditions of soils and is defined as six degrees of freedom: 

three translational and three rotational components, per node. Due to the characteristics of 

damping, the point damping can only be used in dynamic analyses and not in linear analysis.    

 

Point spring and point damping specified at a node, in general, follows the GCS unless an NCS is 

specified, in which case they are defined relative to the NCS.  
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Figure 1-(40) Element Coordinate System of Point Spring/Damping 

Nodal Point 
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1-9-3 Matrix Spring 

 

The stiffnesses in different directions of a point spring are independent of each other. Matrix 

Springs are introduced to couple displacements or rotations in one direction to forces and 

moments in another direction. An example of an application of a matrix spring is the coupling of a 

rotation to translations.  

 

Matrix spring stiffnesses can be defined by the user, but attention should be given to the condition 

that the matrix must be positive definite. Because the matrix must be symmetric only the upper 

triangular matrix can be specified. 

 

In general matrix springs follows the GCS unless an NCS is specified, in which case it is defined 

relative to the NCS.  
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1-10 Rigid Link 

 

The rigid link function constrains geometric relative displacements or rotations between 2 or more 

nodes of a structure. A geometric constraint prescribes that one degree of freedom of a particular 

node is defined by one or more degrees of freedom of one or more nodes. The reference nodes are 

called the master nodes, and the subordinated node is called the slave node. The geometric 

relationships for the eccentric bending condition of the master node and slave node are expressed 

by the equation (1.156). 

Xs Xm Ym ZmU U R ΔZ R ΔY  
 

Ys Ym Zm XmU U R ΔX R ΔZ  
 

Zs Zm Xm YmU U R ΔY R ΔX  
    (1.156) 

Xs XmR R
 

Ys YmR R
 

Zs ZmR R
 

  m sX X X
    

  m sY Y Y
 

  m sZ Z Z
 

 

, ,Xs Ys ZsU U U  : Translations of slave node in the GCS X, Y and Z directions 

, ,Xm Ym ZmU U U  : Translations of master node in the GCS X, Y and Z directions 

, ,Xs Ys ZsR R R  : Rotations of slave node in the GCS X, Y and Z directions 

, ,Xs Ys ZsR R R  : Rotations of master node in the GCS X, Y and Z directions 

, ,s s sX Y Z  : Global coordinates of slave node 

, ,m m mX Y Z  : Global coordinates of master node 

 

A rigid link may be applied to a model part which is assumed to be rigid. It also can be used in the 

case of a stiffened plate for an eccentric connection of plate and stiffener.  
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Fig. 1-(41) illustrates a rigid plane connection applied to a floor (diaphragm). When a building is 

subjected to a lateral load, the relative horizontal deformation in the floor plane is generally 

negligible compared to that in columns, walls and bracings. This rigid diaphragm behavior of the 

floor can be prescribed by constraining all the relative in-plane displacements to be equal. The 

movements consist of two in-plane translational displacements and one rotational displacement 

about the perpendicular direction to the plane. 

 

Figure 1-(41) A floor (plate) diaphragm subjected to a torsional moment about a vertical axis 

 

 

 

 

 

torsional moment 

floor (plate) diaphragm 
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When a floor structure, as illustrated in Fig. 1-(41), is subjected to a torsional moment around the 

vertical direction and the in-plane stiffness of the floor is significantly greater than the stiffness of 

the columns, the entire floor will be rotated by , where, 
1 2 3 4        . Accordingly, 

the four degrees of freedom can be reduced to a single degree of freedom. 

Fig. 1-(42) shows a process in which a total of 24 (64) degrees of freedom are reduced to 15 

d.o.f. within the floor plane, based on the assumption that the floor shape is rigid when rotating. 

 

 

 

floor (plate) 
diaphragm 

slave node 

master node 

floor (plate) 
diaphragm 

master node slave node 

UxUyRz 
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UX :  displacement in the X-direction at the corresponding node 

UY :  displacement in the Y-direction at the corresponding node 

UZ :  displacement in the Z-direction at the corresponding node 

RX :  rotation around the X-axis at the corresponding node 

RY :  rotation around the Y-axis at the corresponding node 

RZ :  rotation around the Z-axis at the corresponding node 

Figure 1-(42) Reduction of d.o.f for floor diaphragm of significant in-plane stiffness 

 

Fig. 1-(43) shows a rigid body connection and a rigid plane connection. Fig. 1-(43) (a) illustrates 

the application of a rigid link using a rigid body connection. In the region where detail results are 

required the rectangular tube is modeled with shell elements, and the tube is represented by beam 

elements where no detailed results are required. Fig. 1-(43) (b) shows an application of a rigid 

plane connection for a column offset in a two-dimensional plane. Whenever the rigid link is used 

in a plane, geometric constraints must be assigned to two translational displacement components 

and one rotational component around the axis perpendicular to the plane. When a rigid link is 

used for all directional components, as shown in Fig. 1-(43) (a), geometric constraints must be 

assigned to all six degrees of freedom. 
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(a)A tube modeled using a beam element and shell elements, and connected by Rigid Body Connection 

 

(b) Eccentricity of an offset-column linked by Rigid Plane Connection  

Figure 1-(43) Application examples of Rigid Links 

* all slave node‟s d.o.f in the X-Z 
plane are linked to the master node 
(translational displacement d.o.f) 

in the X and Z–directions  
and rotational d.o.f  
about the Y-axis 

eccentricity eccentricity 

master node 

slave node 

rectangular tube modeled with plate elements 

Rigid Link 

rectangular tube modeled 
as a beam element 

master node ○  :  slave nodes (12 nodes) 
* all 6 degrees of freedom of 

the slave nodes are linked 
to the master node. 
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2-1 Introduction 

 

Rather than defining reinforcements with distinct finite elements, the concept of embedded 

reinforcements can be used. In this concept the stiffness of the reinforcements is added to the 

stiffness of the continuum elements in which the reinforcements are located. The continuum 

elements in which reinforcement is embedded are called mother elements. The following should 

be noted for using embedded reinforcements. 

 

 The user defines the reinforcement location and the software may calculate the intersections 

of reinforcement position with the mother elements.  

 Reinforcement does not have separate degrees of freedom. 

 Reinforcement and their mother elements are assumed to be perfectly bonded. 

 Reinforcement’s strains are obtained from the displacements of its mother elements.  

 

There are two types of embedded reinforcement elements, Bar and Grid. The input information 

required to define a reinforcement consists of location data, shape information and material 

properties. The location information comprises the location points of the reinforcement. There are 

two ways of defining the reinforcement. In the global definition the reinforcement consists of one 

or more sections, and each section is defined by a number of location points. The software 

calculates the intersections of each section and the mother elements, resulting in reinforcement 

segments. The reinforcements segments constitute together the reinforcement. A reinforcement 

segment never crosses the boundaries of a mother element. In the local definition the 

reinforcement is consisting of 1 section and this section equal to 1 segment. The shape 

information of the reinforcement depends on the type of the reinforcement and the type of the 

mother elements, which is explained in the following paragraphs. 

 

When relative displacements between the concrete and steel reinforcement are relevant, the 

embedded reinforcement concept cannot be used and the reinforcement must be modeled with 

Chapter 2. Embedded Reinforcements 
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truss elements having its own nodes and being connected by interface elements to the concrete 

elements. In such situations the interface elements will exhibit nonlinear failure behavior. 

 

2-2 Reinforcement Types  

 

2-2-1 Bar Reinforcement 

 

The bar reinforcement can be represented by the line or a point, dependent on the type of mother 

element:  

 

- Line: for solid, plate, shell & plane stress elements   

- Point: for plane strain & axisymmetric elements 

 

The bar reinforcement for the different element types will be explained in the following 

paragraphs. 

 

In midas FEA the location information defines lines and points. A bar may be divided into 

sections. The following properties are required for a bar reinforcement: 

 

- Material property 

 - Cross-section 

 - Pre-stress and post-tensioning 

 

An embedded reinforcement to which a pre-stress is assigned is called a tendon. 

 

Fig. 2-(1) shows the 2 possible bar sections. Bar sections can be defined by a straight 2-node line 

and second order 3-node curve. 
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11 3

22

 

Figure 2-(1) Bar sections with location points 

 

In the global reinforcement definition preprocessing phase the bar sections are automatically 

divided into segments matching with the elements which the reinforcement is embedded. Bar 

reinforcement segments retain the properties of the related bar section. 

  

The order (linear or quadratic interpolation) of the segments is equal to the corresponding bar 

sections which they have been calculated. If a bar section is defined by 2-nodes, the bar segments 

derived from it also retain 2-node location points each. Similarly, if a higher order bar section is 

defined by 3-nodes, each of the related bar segments also has 3-node location points. The shapes 

of divided bar reinforcement segments can be checked in the post-processing. 

 

In the local reinforcement definition the user directly defines the bar segment in an individual 

mother element in such a way that a reinforcement segment never crosses the boundaries of the 

mother element. In this case the bar segment input will be without a separate division process. 

 

The stiffness of the divided bar reinforcement segments will be added to the stiffness of the 

corresponding mother elements. In bar reinforcement segments, 2 integration points are used for 

the line type and 1 integration point is used for the point type reinforcement. The locations of the 

integration points are automatically calculated. Fig 2-(2) (a) shows two bar segments with their 

location points and for every segment 2 integration points have been defined. Fig 2-(2) (b) shows 

a stress component 
xx  and the strain component 

xx at integration point. The stress is oriented 

in the tangential direction of the reinforcement segment at the location of the integration point.        
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(a) topology                                               (b) stress 

Figure 2-(2) Bar reinforcement segments 

 

2-2-2 Grid Reinforcement 

 

Grid reinforcement can be defined as a plane or as a line. In its turn the plane shape grid can be 

composed of triangular and quadrilateral shapes. The shape of the grid reinforcement is dependent 

on the type of the mother element. 

 

- Plane:  for solid, plate, shell & plane stress elements 

- Line:   for plane strain & axisymmetric elements 

 

The grid reinforcement is explained in the following sections for the respective element types. 

In midas FEA, the shape of the grid reinforcement is defined by location points and the 

reinforcement is divided into grid reinforcement sections. The properties of the grid sections are 

equal to the properties of the corresponding grid reinforcement. The grid reinforcement has the 

following properties: 

 

- Material Property (Isotropic/Orthotropic) 

- Reinforcement Axes 

 - Equivalent Thickness (Isotropic/Orthotropic) 

 - Prestress and post-tensioning 
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There are 4 types of reinforcement grid sections. A quadrilateral grid section can be defined by 4 

or 8 nodes as shown in Fig 2-(3), and a triangular grid section can be defined by 3 or 6 nodes as 

shown in Fig 2-(4). 

 

1

4

3

2

1

5

2

6

3

7

4

8

 

Figure 2-(3) GRID contour of quadrilateral sections with nodes 

 

 

3

1

2

1

6

3

5

2

4  

Figure 2-(4) GRID contour of triangular sections with nodes 

 

During the preprocessing the grid sections are subdivided into particles which are located in the 

mother elements, such that a grid section is divided into grid reinforcement segments matching to 

the shape of the mother elements. Grid sections are divided into triangular grid reinforcement 

segments.  
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If the user wishes to use the local reinforcement definition the grid segments must be defined one-

to-one with the grid sections and match to the shapes of the mother elements. In this case, the grid 

sections input will be used as grid segments without a separate division process. Plane grid 

reinforcements which are divided in the preprocessing will result into triangular shaped segments. 

Although when the user directly inputs the grid reinforcement segments, the user is free to input 

both triangular and quadrilateral shapes of grid segments.  

 

 

(a) Grid reinforcement segments 

element node

location point

integration point

xx

xx yy

yy

 

(b) stresses 

Figure 2-(5) Reinforcement grid  

 

Quadrilateral grid reinforcement segments have 4 integration points, triangular grid reinforcement 

segments with 3 nodes have one integration point, triangular grid reinforcement segments with 6 

nodes have 3 integration points and line shape grid reinforcement segments have 2 integration 

points. Fig 2-(5) (a) shows the quadrilateral grid segment in a solid element with the location 

points and integration points of the grid segment. The locations of integration points in the grid 

segments are automatically calculated.  
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For grid reinforcement, the local x̂  axes can be defined by the user.  The local axes, x̂ and ŷ  

are orthogonal to each other, and the strains (
xx and yy ) and stresses (

xx and yy ) at the 

integration points are oriented in the x̂ and ŷ  directions respectively.  

 

A grid reinforcement has local axes in the x̂ and ŷ  directions, and the stiffness only exists in 

these directions. A reinforcement grid cannot carry shear-stresses. Different equivalent thickness 

values may be specified for each axis.  
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2-3 Finite Element Formulation 

 

The position of a reinforcement can be defined by the positions of the location points of its 

segments. A reinforcement segment consists of n location points, and each point is defined by the 

coordinates
i

reX ,
i

reY  and
i

reZ . The location points of the reinforcement segment can be arranged 

in a matrix as Eq. (2.1). The superscripts refer to the location points.  


















n

rerere

n

rerere

n

rerere

re

ZZZ

YYY

XXX







21

21

21

X      (2.1) 

The shape function of reinforcement can be expressed as Eq. (2.2). 

 nNNN 21N      (2.2) 

The general form of shape function  niNi ,...,2,1  depends on the order of the reinforcement 

segment and is defined as follows: 

 

Shape function of a 2-node line bar reinforcement segment  

     1
2

1
1N ,      1

2

1
2N     (2.3) 

Shape function of a 3-node line bar reinforcement segment 

     1
2

1
1N ,      1

2

1
2N ,    2

3 1  N   (2.4) 

Shape function of a 4-node quadrilateral grid reinforcement segment 

      11
4

1
,1N ,       11

4

1
,2N , 

      11
4

1
,3N ,       11

4

1
,4N   (2.5) 
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Shape function of an 8-node quadrilateral grid reinforcement segment 

     851
2

1

2

1
11

4

1
, NNN   , 

     652
2

1

2

1
11

4

1
, NNN       (2.6) 

     763
2

1

2

1
11

4

1
, NNN   , 

     874
2

1

2

1
11

4

1
, NNN    

      11
2

1
, 2

5N , 

    2

6 11
2

1
,  N , 

      11
2

1
, 2

7N , 

    2

8 11
2

1
,  N  

Shape function of 3-node triangular grid reinforcement segment 

   1,1N , 

   ,2N , 

   ,3N       (2.7) 

Shape function of 6-node triangular grid reinforcement segment 

     851
2

1

2

1
11

4

1
, NNN    
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     652
2

1

2

1
11

4

1
, NNN       (2.8) 

     763
2

1

2

1
11

4

1
, NNN    

     874
2

1

2

1
11

4

1
, NNN    

      11
2

1
, 2

5N  

    2

6 11
2

1
,  N  

      11
2

1
, 2

7N  

    2

8 11
2

1
,  N  

If the j th integration point of reinforcement segment, 

  rejN X       (2.9) 

represents the coordinates of this integration point associated with the reinforcement segment. 

Since the reinforcement segment is located within the mother element, the integration point is also 

located within the mother element.  

 

An isoparametric mapping technique is used for each element used in midas FEA. For each 

integration points on a reinforcement segment, the isoparametric coordinates with respect to the 

mother element are calculated.    

 

The isoparametric coordinates of the j th integration point of a reinforcement segment in a 3D 

element can be written as: 
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 , ,j   G     (2.10) 

The isoparametric coordinates of the j th integration point of a reinforcement segment in a 2D 

element can be written as: 

 ,j  G       (2.11) 

.Re inB


in Eq. (2.12) represents the strain-displacement matrix for the reinforcement strain in the jth 

integration point of a reinforcement section as a function of the displacements of the nodes of the 

mother element. 

 jmother

j

in GBB ..Re


      (2.12) 

 

The strain-displacement matrix of the reinforcement uses the element coordinate system of the 

mother element. The stiffness of the reinforcement is expressed in the reinforcement coordinate 

system. Accordingly, .Re inB


 needs to be rotated from the element local coordinate system into 

the local coordinate axes of the reinforcement.  

 

If the mother element is a 3D element, the strain in the local coordinate system of the mother 

element can be transformed into the strain in the local coordinate system of the reinforcement as 

follows:   



































yy

xx

zz

yy

xx





 









T       (2.13) 

Here, T is a matrix, which projects and rotates the strain tensor of the mother element into the 

strain tensor of the reinforcement segment. The same transformation can be applied to the B 

matrix. 

j

in

j

in .Re.Re BTB


       (2.14) 
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The stress-strain matrix in the reinforcement can be expressed as follows: 

 

For a reinforcement bar, 

xx eAD E       (2.15) 

where, A  is the cross section of the bar reinforcement. 

 

For an isotropic reinforcement grid, 











xxxx

xxxx

t

t





E

E
D

0

0
.     (2.16) 

For an orthotropic reinforcement grid, 











yyyy

xxxx

t

t





E

E
D

0

0
     (2.17) 

where, 
xxE  is the Young’s modulus in the x̂  axis direction of the local coordinate of the 

reinforcement. 
xxt and yyt   represent the thicknesses in the x̂  and y


 directions in the local 

coordinate system of the reinforcement segment respectively. 

 

The stresses in the local coordinate of the reinforcement can be obtained as follows: 


















yy

xx

yy

xx








D       (2.18) 

The contribution of the reinforcement segment to the element stiffness matrix is:  

rein
V

in

T

in dV KDBB  ReRe      (2.19) 

and the contribution of the reinforcement segment to the element internal force vector is. 

rein
V

T

in dV FσB  Re       (2.20) 

where σ is the stress tensor at the reinforcement integration point as defined in (2.18). 
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When we substitute the integrals in the Eq. (2.19) and Eq. (2.20) by numerical integrations, the 

contribution of a reinforcement segment to the element stiffness matrix and the element internal 

force vector can be expressed as: 




Nip

j

jj

in

Tj

Rrein

1

Re det JDBB      (2.21) 




Nip

j

jTj

Rrein

1

det JσB       (2.22) 

where, Nip  represents the number of integration points at the reinforcement segment. 
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2-4 Reinforcement in Plane Strain Element 

 

2-4-1 Bar in Plane Strain Element 

 

In a plane strain element the bar reinforcement can be inserted as a point shape as illustrated in 

Fig. 2-(6). 

 

 

Figure 2-(6) BAR in plane strain element 

 

In a plane strain element the bar reinforcement is defined by a single location point and therefore 
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a division of the bar into sections or particles is not necessary.  

 

Fig. 2-(7) (a) shows a bar reinforcement inserted into a higher order plane strain element. Fig. 2-

(7) (b) shows a number of BAR reinforcements inserted into plane strain elements 1, 2, 3 and 4. 

1

1

2 4
26

25

3
24

element node

bar locationX

Z

 

           (a) one bar                                   (b) three bars (example) 

Figure 2-(7) Bar location points in plane strain elements   

 

A bar reinforcement in a plane strain elements has a single strain component, 
xx  and a single 

stress component, 
xx  in the axial direction.. 

 

2-4-2 Grid in Plane Strain Element 

 

In a plane strain element a reinforcement grid can be inserted as a 2 or 3 points line. Note that the 

definition of a grid reinforcement for plane strain elements differs from that for plane stress 

elements. Because plane strain elements are used for structures with an infinite thickness, the grid 

is expanded in a perpendicular direction to the element.  
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Figure 2-(8) Grid segment in plane strain element 

 

Numerical integration is performed along the line of the grid reinforcement. A grid reinforcement 

inserted into plane strain elements has two strain components, 
xx  and yy  and two stress 

components, 
xx and yy . In plane strain elements the x-axis of grid reinforcement is by 

default defined as the tangential direction of the line shape.  In contrary to other element types, 

the x-axis of grid reinforcement in a plane strain element cannot be defined in a different direction 

than the default direction. For a grid reinforcement in a plane strain element different thicknesses 

and Young’s moduli may be specified in the x-axis and y-axis directions.   

 

In plane strain elements a grid reinforcement is defined as a line, which is subsequently divided 

into sections by the Auto-mesh function. And the sections are divided into reinforcement 

segments which are one-to-one related to individual plane strain elements. The shapes of 

reinforcement sections are defined by the location points and shape functions of the lines. Fig. 2-

(9) shows the grid sections of plane strain elements, which can be input in midas FEA. The fish 

bone like shape represents that the line is extruded to a plane in the plane strain elements.  
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Y

Z X

1

2

1

2 3

 

Figure 2-(9) Grid sections with reinforcement nodes 

 

Fig. 2-(10) shows how a grid reinforcement is divided into section 1 and section 2. Section 1 is a 

higher order section, and section 2 is a lower order section. For each section the intersection 

points with the boundaries of the plane strain elements are calculated and by this operation the 

sections are divided into segments which each of them matches to 1 element. The location points 

are defined at the intersections with elements. For the higher order sections also location points 

are defined in the middle of each segment. 

 

reinforcement node

location point

section 2

section 1

24

25

26 27

 

Figure 2-(10) GRID sections in plane strain elements 

  

In case of local reinforcement definitions the sections are defined as segments. That means each 

section is defined such that it does not cross the element boundaries. In that case a section can be 

directly connected to one element. 

 

Fig. 2-(11) shows the two possible reinforcement sections for a grid in a plane strain element. 
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1
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2 3

Y

Z X  

Figure 2-(11) Grid segments with location points in plane strain elements 

 

Fig. 2-(12) shows how the 2 sections in Fig. 2-(10) are defined in segments which each have their 

location points.  
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Figure 2-(12) Grid segments in plane strain elements  
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2-5 Reinforcement in Axisymmetric Element 

 

2-5-1 Bar in Axisymmetric Element 

 

In axisymmertic elements a bar reinforcement can be inserted by defining a single point location 

as illustrated in Fig. 2-(13).  

 

 

Figure 2-(13) BAR in axisymmetric element 

 

A bar reinforcement in an axisymmetric element is oriented in the circumferential direction and 

has a constant cross section. The bar reinforcement cannot be divided into sections.. 

 

Fig. 2-(14) (a) shows a bar reinforcement inserted into a higher order axisymmetric element. Fig. 

2-(14) (b) shows a number of BAR reinforcements inserted into axisymmetric elements 1, 2, 3 

and 4. 
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         (a) One bar                                    (b) Three bars (example) 

Figure 2-(14) Bar location points in axisymmetric elements  

 

A bar reinforcement in an axisymmetric element has a single strain component, 
xx  and a single 

stress component, 
xx . The strain in the bar reinforcement is related to the displacements in the 

nodes of the mother element. 

 

2-5-2 Grid in Axisymmetric Element 

 

In every type of axisymmetric element grid reinforcement can be inserted and grids can be 

defined by 2 or 3 points. The definition of grid reinforcement in axisymmetric elements is similar 

to grid reinforcement in plane strain elements. Axisymmetric elements are symmetric around the 

GCS Z-axis. Fig. 2-15 shows a grid reinforcement embedded in an axisymmetric element and 

both the element and the grid are rotated in the circumferential direction.  
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Figure 2-(15) Grid section in axisymmetric element 

Numerical integration is performed along the line of the grid reinforcement. At each integration 

point of the grid reinforcement segment in an axisymmertic element two strain components, 
xx  

and yy  and two stress components, 
xx and yy  are defined. The x-axis of a grid 

reinforcement in an axisymmetric element is by default set to the direction tangential to the line of 

the grid section in the plane of the element which is always defined in the GCS XZ-plane in midas 

FEA. In contrary to other element types, the x-axis of a grid reinforcement in an axisymmetric 

element cannot be defined in a different direction than the default direction..  

 

A grid reinforcement in axisymmetric elements is defined by a line geometry which is 

subsequently divided into reinforcement sections by the Auto-mesh function. The divided 

reinforcement sections are defined by location points.  The grid sections as displayed in Fig. 2-

(16) can be defined for axisymmetric elements.  
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1
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X  

Figure 2-(16) Grid sections with nodes in axisymmetric elements 

 

Fig. 2-(17) illustrates how a grid reinforcement can be composed of section 1 and section 2. In 

this figure section 1 is a higher order line, and section 2 is a lower order line. For each section the 

intersection points with the boundaries of the axisymmertic elements are calculated and by this 

operation the sections are divided into segments which each matches to 1 element. At the 

intersections location points are defined. For the higher order sections also location points are 

defined in the middle of each segment. 

 

 

 

reinforcement node

location point

section 2

section 1

24

25

26 27

 

Figure 2-(17) Grid sections in axisymmetric elements 

 

In case of local reinforcement definitions the sections are defined as segments. That means each 

section is defined such that it does not cross the element boundaries. In that case a section can be 

directly connected to 1 element. 
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Fig. 2-(18) shows the 2 possible reinforcement sections for a grid in an axisymmertic element. 
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Figure 2-(18) Grid segments with location points in axisymmetric elements  

 

Fig. 2-(19) shows the 2 sections in Fig. 2-(17) are defined in segments which each have their 

location points.  
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Figure 2-(19) Grid segments in Axisymmetric Elements 
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2-6 Reinforcement in Plane Stress Element 

 

2-6-1 BAR in Plane Stress Element 

 

In all plane stress element types bar reinforcement can be defined by 2 nodes or 3 nodes line 

sections. Fig. 2-(20) shows a line consisting of 2 sections, section 1 and section 2, which each are 

split into reinforcement segments such that a segment never crosses an edge of the mother 

element. Section 1 is a 3-noded higher line, and Section 2 is a 2-noded lower order line. The 

higher order section is divided into 3-point segments. Similarly the lower order section is divided 

into 2-point segments. The position of each segment is defined by location points. 

 

reinforcement node

location point

section 2

section 1

24

25

26 27

 

Figure 2-(20) Bar sections in plane stress elements 

 

Fig. 2-(21) shows the mother elements and the bar reinforcement segments. The bar segment 

defined by the location points 28, 36 and 22 is located in the plane stress element No. 2. Since the 

section number 1 is a higher order line, the segment related to this section is also a higher order 

line. The segment defined by Location points 30 and 27 is a lower line because it is related to the 

section number 2 which is a lower order line. 
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Figure 2-(21) Bar segments in plane stress elements 

 

Fig. 2-(22) shows a bar reinforcement segment in an 8-node quadrilateral plane stress element. 

Each line segment has 2 integration points. 

 

element node

location point

integration point
 

Figure 2-(22) Bar segment in plane stress element with integration points 

 

The required properties for a bar reinforcement in plane stress elements consist of the cross 

section of the reinforcement bar and the Young’s modulus..  

 

2-6-2 Grid in Plane Stress Element 

 

In all types of plane stress elements in midas FEA grid reinforcement can be inserted. The grid 

reinforcement sections can be defined by 3, 4, 6 or 8 points. The method of defining a grid 

reinforcement for plane stress elements is identical to that for bar reinforcement. In a plane stress 
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element a grid reinforcement always covers the full surface of the element. 

 

The grid reinforcement will only be applied to those plane stress elements, which are fully 

covered by a grid reinforcement section.  

27

26
24

25  

Figure 2-(23) Grid sections in plane stress elements 

 

As shown in Fig. 2-(23), a quadrilateral grid reinforcement section is defined by the location point 

24, 27, 25 and 26. The regular grid in the background is a mesh consisting of plane stress 

elements. Only the surfaces of the plane stress elements which are marked with an X will be 

covered by a grid reinforcement. 
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2-7 Reinforcement in Solid Element 

 

2-7-1 Bar in Solid Element 

 

In all solid element types bar reinforcement can be inserted by 2 or 3 nodes lines. A bar 

reinforcement may consist of one or more reinforcement sections. The user defines reinforcement 

sections, and in the pre-processing phase the intersections of the bar sections and the mother 

elements are calculated. Each section is divided into one or more reinforcement segments that are 

located in one mother element. In midas FEA a reinforcement bar can be defined by a geometrical 

line and by using the auto-mesh function the line can be divided into the reinforcement sections. 

The location of each reinforcement section is defined by 2 or 3 reinforcement nodes. The location 

of a reinforcement segment is defined by the location points. The location point coordinates are 

used to calculate the contribution of the bar-segment to the stiffness and internal forces of the 

mother element.  

 

Fig. 2-(24) shows a bar reinforcement that consists of 2 reinforcement sections. The first section is 

defined by the reinforcement nodes 16, 27 and 28 and the section is defined by the reinforcement 

nodes 28 and 29. The first section is a higher order line, while the second section is a lower order 

line. The user can define the sections using the Auto-mesh function.  
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Figure 2-(24) Bar sections in solid elements 

In Fig. 2-(25) the same mesh of solid elements and the same bar reinforcement are shown as in 

Fig. 2-(24), but now the bar reinforcement has been split into reinforcement segments.  The 

section number 1 crosses the elements number 2 and 4 and therefore has been split into 2 

segments. The section number 2 intersects the elements 4, 8 and 12 and therefore has to be split 

into 3 segments. Each segment of section 1 has 3 location points, because this is a higher order 

section and each segment of section 2 has 2 location points because this is a lower order section.  

 

 

Figure 2-(25) Bar location points in solid elements   
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Fig. 2-(26) shows a bar reinforcement segment in a 20-node hexahedron solid element. Each line 

segment, both 2 nodes and 3 nodes types, has 2 integration points. The local x direction of the 

stress σxx and strain εxx at the integration points is tangential to the bar. 

 

 

Figure 2-(26) BAR location points in solid element  

2-7-2 Grid in Solid Element 

 

In all types of solid elements in midas FEA a grid reinforcement can be defined as 3 or 6-noded 

triangular grid or as 4 or 8-noded quadrilateral grid. A grid reinforcement is defined in a similar 

way as the bar reinforcement. A geometrical surface is defined as reference for the reinforcement 

grid. The grid reinforcement is divided into reinforcement sections using the Auto-mesh function. 

In the preprocessing phase the reinforcement sections are subsequently divided into grid 

reinforcement segments, which are defined such that each segment is always positioned within 

one single mother elements. 

 

When a grid reinforcement is defined into solid elements, we can check whether the position of 

the grid is located inside the mother elements. If the grid reinforcement is not fully located within 

the mother elements, an error is logged and the program terminates the execution. 
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(a) Input a grid reinforcement into solid elements 

 

 

(b) Generated location points of the grid segments 

Figure 2-(27) Grid sections in solid elements 
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Fig. 2-(27) shows a mesh of solid elements and a quadrilateral, which is defined by the 

reinforcement nodes 30, 31, 32, 33, 34, 35, 36 and 37 for the definition of a grid reinforcement 

segment. In the preprocessing the grid segment is divided into triangular grid segments as shown 

in Fig. 2-(27) (b).   

The user may also directly input the desired reinforcement segments without going through the 

division process in the preprocessing. In such a case, the user needs to define grid reinforcement 

sections corresponding to the target elements, thereby using the reinforcement sections as 

reinforcement segments. 

 

Figure 2-(28) Grid segments in solid elements 

 

Fig. 2-(28) shows the possible combinations of grid reinforcement segments that may be coupled 

directly into elements. If reinforcement segments are created using the preprocessing, only 

triangular segments will be created. However, the user is free to input directly any type of 

segments. 

 

In Fig. 2-(29) a grid reinforcement segment is located in a solid element and the x and y in the 

figure represent the local axes of the grid reinforcement segment.  
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Figure 2-(29) Grid segment in a solid element 
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2-8 Reinforcement in Plate Element   

 

2-8-1 Bar in Plate Element   

 

In a curved or discrete plate elements a bar reinforcement section can be defined by a straight line 

with 2 points or a curved line with 3 points. The position of a bar reinforcement section is defined 

by reinforcement nodes. In the preprocessing phase the reinforcement section is split into bar-

segments, which of them is positioned within 1 shell element. The position of a bar reinforcement 

segment is defined by location points.   

 

 

Figure 2-(30) Bar location points in plate element 

 

In Fig. 2-(30) a Bar reinforcement segment inserted in a curved shell element is shown. The bar 

reinforcement segment is defined by 3 location points, and each bar segment has two integration 

points which are automatically calculated. 
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Figure 2-(31) Bar sections in mesh of curved plate elements 

 

The user can input a bar reinforcement by defining a line in a 3-dimensional space. Fig. 2-(31) 

shows two bar sections that the first section is a straight line defined by nodes 24 and 25 and the 

second section is a curved line defined by the nodes 26, 27 and 28. These sections are intersected 

by the element boundaries and at the intersection points of the bar sections and element 

boundaries location points are generated. Each segment, split from sections, corresponds to one 

plate element. On the curved segments all location points are generated in the middle of each 

segment so that the curved shape of the section is transferred to the respective segment.  

 

 

Figure 2-(32) Eccentricities for Bar location points in curved plate elements 
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Each location point is defined in the neutral plane of the respective plate element. In addition, the 

local-z coordinate in the ECS is kept for each location point. Figure 2-(32) illustrates the local z-

coordinates of the location points of the bar segment as z1, z2 and z3. The local-z coordinate 

indicates the distance from the neutral plane of the plate element to the actual location of the 

reinforcement location point. The local-z coordinate is automatically calculated in the 

preprocessing when the bar segment is split into segments. 

 

2-8-2 Grid in Plate Element 

 

In a curved or discrete plate element a grid reinforcement section can be defined as 3 or 6-noded 

triangular grid or as 4 or 8-noded quadrilateral grid.  

 

 

Figure 2-(33) Grid location points in curved plate element 

 

In Fig. 2-(33) a grid reinforcement segment in a curved shell element is shown. For a grid 

reinforcement in a shell element two material models, isotropic linear elastic and orthotropic 

linear elastic, can be used. The orientation of the bars in the reinforcement grid is defined by the 

material axes as shown in Fig. 2-(33). The MCS, x and y axes are always orthogonal. In case of an 

orthotropic reinforcement grid, different thicknesses and modulus of elasticity in x and y direction 

of the Grid are defined. 
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Figure 2-(34) Grid section in curved plate elements 

 

In Fig. 2-(34) a quadrilateral grid reinforcement is defined by the reinforcement nodes 24, 25, 26 

and 27. The Grid sections can be defined as a 3 or 6-noded triangle or a 4 or 8-noded quadrilateral. 

In Fig.2-(34) the grid section is divided into grid reinforcement segments such that only those 

elements that are fully covered by the grid section will contain a grid reinforcement segment. 

These plate elements are highlighted with gray shadow.  
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Figure 2-(35) Eccentricities for Grid in curved plate elements 
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Grid reinforcement segments are defined by the location points in the neutral plane of the plate 

elements. In addition to that a local-z component in ECS for each location point is calculated. This 

local-z coordinate is identical to that explained previously in Bar reinforcement. The element 

numbers 2 and 3 in Fig. 2-(35) retain equal local-z coordinates in all location points. The local z 

coordinates of the location points in element number 1 varies from 0.2-0.6. 
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2-9 Prestress of Reinforcement 

 

2-9-1 Overview 

 

Two types of Bar reinforcement exist, reinforcement and tendon. The reinforcement type is used 

for reinforcement in structures, and the tendon type is used to represent tendons to which prestress 

is applied. Two types of prestress can be applied to a tendon. One is the uniform prestress type in 

which a constant value of the prestress is applied to the entire tendon, and the other is the post-

tension type, which accounts for prestress losses due to friction, etc.  

 

2-9-2 Uniform Prestress Reinforcement 

 

For uniform prestress reinforcement, different prestress values can be applied to each axis of the 

grid, and a single prestress can be applied to the bar. 

 

2-9-3 Post-tensioned Reinforcement 

 

(1) Loss of Prestress 

 

Tendon prestress forces are generally introduced to tendons by jacking forces at each end of the 

tendon, whereas the prestress forces applied to the tendons are reduced by prestress losses, which 

are caused by several factors. 

 

Tendons placed in curvature induce prestress losses due to the curvature effect, which is referred 

to as friction loss due to curvature. Apart from this, prestress losses due to the wobble effect exist. 

Even after the tendons are tensioned and friction losses take place, movement of the anchorage 

device induces tension losses.  
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Midas FEA finds such tension losses through modeling the tendons and concrete.  

 

 

(2) Friction Losses 

 

P P
p

1

k

 

Figure 2-(36) Pressure exerted onto concrete by curved tendon 

 

Prestress losses take place due to friction between the tendons and the surrounding sheathing. The 

friction is classified into the curvature friction due to the curvature of tendons and the wobble 

friction due to the length effect.   

 

The curvature friction can be obtained as follows. The geometry of a tendon in a curved profile 

can be expressed in  rx  with respect to the coordinate axis, r in the axial direction of the tendon. 

If an external force, P  is applied to each end of the tendon, the following pressure, p is induced 

by the curvature. 

Pp         (2.23) 

where,  represents the curvature, which is calculated as 

2

2

r

x




       (2.24) 

The prestress loss due to the pressure, p per unit length can be found using the frictional 

coefficient,  (/radian). 
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p
r

P





       (2.25) 

In order to reflect the wobble (friction) effect, which stems from imperfect linear alignment of the 

sheathing, a fictitious curvature,
1 is introduced, which is referred to as the wobble parameter. 

The reduction in prestress forces due to curvature can be expressed as: 

P
r

P
1




      (2.26) 

Prestress loss at a particular location can be obtained by integration in the axial direction starting 

from the anchorage where the prestressing is applied.   

 


 dr
r

P
P       (2.27) 

If the tendon has uniform curvature,  , and the prestressing force at the anchorage is
0P , the 

prestress force at the location, r  length away from the starting point is obtained as follows: 

    r
ePrP


 1

0


      (2.28) 

Eq. (2.28) can be written as 

   ePrP 0       (2.29) 

where,  represents the rotation angle between the vector in the axial direction at the starting 

point and the tangential vector at the location r away.  

 

r

x
( )r

r

x
(    )r   r

r  

Figure 2-(37) Angular rotation of tendon curvature 
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 used in Eq. (2.29) is as follows: 

 
r

x
rr




 11      (2.30) 

Midas FEA finds the prestress forces, which reflect the losses using the jacking force at the 

anchorage,
0P and the tendon properties, at each integration point of reinforcement. 

 

(3) Slippage of Anchorage Device 

 

Tendons are anchored by wedging at the anchorages. When the tendons are tensioned and released, 

inward slippage at the wedges takes place thus allowing the tendons to release slightly. If we 

assume that the length of this slippage is l , tension losses in the tendons in the vicinity of the 

anchorages take place. If we also assume that x is the length affected by the loss in prestress due 

to the penetration (slippage), we can derive an equilibrium equation. 

  lEAdrrP
x

       (2.31) 

 

 

Figure 2-(38) Loss of prestress in anchored tendon 
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And the tendon prestress force is found, which satisfies Eq. (2.32) starting from the anchorage. 

  lEAdrxP
L

       (2.32) 

The integration of Eq. (2.32) is performed by the trapezoidal rule. And the integration points, 

which satisfy the condition of Eq. (2.32), are found first. If the point satisfying the condition of Eq. 

(2.32) does not lie within the tendon, the process of calculating the tension loss in the tendon is 

not performed properly. If the tendon is prestressed from both ends simultaneously, the tendon 

stress is calculated in two steps reflecting the effect of tension losses at each end separately. 

Prestress losses are also individually calculated at each end at this time. Fig. 4 shows the prestress 

losses due to penetration (slippage) at the anchorages at both ends. 

 

Figure 2-(39) Loss of prestress due to penetration of anchorages 

Prestress forces resulting from jacking at the anchorage positions 1 and 2 in Fig. 2-(39) are 

calculated separately. The prestress forces at this time do not reflect the losses due to anchorage 

penetration. Once the prestress force distributions are obtained while reflecting the prestress 

losses due to the penetration of anchorages at each end separately, the two prestress force 

distributions are combined. 
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3-1 Introduction 

 

Interface elements are used to model discrete cracks in materials or relative movements at the 

boundaries of model parts. Interface elements for instance can be used to account for discrete-

cracking of concrete, bond-slip at the bonding face of a steel reinforcement bar and concrete and 

failure of mortar in a masonry wall. 

 

Interface elements are defined by using the general finite element formulation, whereas the thickness of 

the elements is assumed to be zero. In order to define an interface element with zero-thickness from 

numerical analysis point of view, a penalty stiffness is assigned for the interface element. If the penalty 

stiffness is too high it might cause numerical problems and when the penalty stiffness is too low the 

interface may yield with undesired relative displacements from both sides of the interface element. The 

user should pay attention to a proper definition of the penalty stiffness. It is advised to choose the penalty 

stiffness as k = 1000 * E * d, with E being the highest Young’s modulus of used in the finite element 

model and d being a representative element size. The relationship between the relative displacement 

u  and the traction t  is defined by equation (3.1). 

 t D u                                                      (3.1) 

t , D  and u  in a two-dimensional element are expressed in Eq. (3.2). The relative 

displacement and traction at one integration point on an interface are shown in Fig. 3-(1). 
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 

D , 
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t

u

u

 
   

 
u                            (3.2) 
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                                  (a) Relative displacement                       (b) Traction 

                                 Figure 3-(1) Relative displacement and traction in 2-D 

 

In a three-dimensional case, the same components are given by Eq. (3.3) and shown in Fig. 3-(2). 
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t

u

u

u

 
 

   
  

u                          (3.3) 

 

                (a) Relative displacement                              (b) Traction 

   Figure 3-(2) Relative displacement and traction in 3-D  

  

The dotted lines represent the interface surface. 
nt  denotes the normal traction and 

st and 
tt  

denote the tangential tractions. 
nu  denotes the normal relative displacement and 

su and 

tu  denote the tangential relative displacements. Please note that in the linear constitutive 

equations (3.2) and (3.3) the relations between relative displacements and traction for each of the 

directions are fully uncoupled i.e. the normal traction does not have any influence on the stiffness 

in the tangential direction.  
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3-2 Coordinate System and Relative Displacement 

 

The relative displacement vector u  at an integration point of an interface element is computed 

by using the displacements of the nodes of the element at the top and the bottom faces. For this, 

the displacements at the top nodes of the interface element are given by: 

 
T

top top top top

i i i iu v wu     (3.4) 

The translational displacements ,u v and w  and the coordinates ,x y and z  within the 

element are expressed as: 

 

1
i

N
top top top

i

i

x N x


 , 
1

i

N
top top top

i

i

y N y


 , 
1

i

N
top top top

i

i

z N z


   

1
i

N
top top top

i

i

u N u


 , 
1

i

N
top top top

i

i

v N v


 , 
1

i

N
top top top

i

i

w N w


          (3.5) 

The displacements and coordinates at the bottom of the interface element can be expressed in the 

same way. The Eq. (3.6) and (3.7) are identical to Eq. (3.4) and (3.5) except that the superscript 

“top” is replaced with “bot”.  

 
T

bot bot bot bot

i i i iu v wu     (3.6) 
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bot bot bot
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N
bot bot bot
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i
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1
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bot bot bot

i

i
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

   

1
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N
bot bot bot

i

i

u N u


 , 
1

i

N
bot bot bot

i

i

v N v


 , 
1

i

N
bot bot bot

i

i

w N w


  (3.7) 

 

The nodal displacements are defined in the element local coordinate system ECS. However, the 

relative displacements and tractions at the integration points are defined in the normal and 
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tangential directions of the interface element. In addition, the constitutive relation of the interface 

is defined in this system. Since interface elements do not transmit rotational stiffness, only the 

relative displacements in ECS are used to calculate the relative displacements as illustrated in Eq. 

(3.8).  

top bot  u u u      (3.8) 

where,  

 

 

T
top top top top

n s t

T
bot bot bot bot

n s t

u u u

u u u





u

u

 

The following condition applies to all interface elements in FEA due to equality in number of 

nodes at each side of the element. 

 

 Nbot = Ntop. 

 

The matrix B which is used to calculate the relative displacements in the integration points from 

the displacements in the nodes. 

 u Bu                (3.9) 

 

where, 

N Nbot top   B  

 
T

bot topu u u  

 



 

 

We Analyze and Design the Future 153 

Analysis and Algorithm Manual 
m

id
a

s 
F

E
A

 

3-3 Point Interface Element 

 

 

                                          Figure 3-(3) Point interface element 

 

A point interface element is defined by the top and bottom nodes and the element axes at the 

boundary surface as shown in Fig. 3-(3). Since the top and bottom nodes of the element can be 

defined at the same position, the user must directly assign the element axes of the boundary 

surface. Fig. 3-(3) shows the two nodes separately for the sake of clarity in explanation. The user 

should be aware that the interface element axes are determined by the user-defined element x-axis. 

That is, the normal n and tangential directions t and s of the axes of the interface element are 

determined by the x, y and z axes of the element respectively. The element local x axis is assigned 

in the direction from the bottom node to the top node. 

 

In general the global coordinates of a point in an element are defined by using the shape function 

(
iN ) as follows: 

11

bot bot botx N x   

2 2

top top topx N x                                                  (3.10) 
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The total displacements at a point are defined by the isoparametric shape function as follows: 

1 1

bot bot botu N u   

2 2

top top topu N u                                                  (3.11) 

For a point interface element the isoparametric shape function is defined as one. 

 

1 2
1bot topN N                                                 (3.12) 

The relative displacement-element displacement matrix can be thus expressed as: 

1 20 0 0 0bot topN N   B                                    (3.13) 
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3-4 Line Interface Element 

 

 

                                          Figure 3-(4) Line interface element 

 

Midas FEA provides line interface elements with lower order and higher order interpolation 

functions as shown in Fig. 3-(4). The line interface elements can be used to connect plane 

elements as well as to connect plane elements and line elements. 

 

The stiffness matrix D  is identical to Eq. (3.2).  

 

The global coordinate of a point in a line interface element is defined by using the shape function 

as follows: 

 

1 1 2 2 5 5
( )bot bot bot bot bot bot botx N x N x N x       

3 3 4 4 6 6
( )top top top top top top topx N x N x N x       
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1 1 2 2 5 5
( )bot bot bot bot bot bot boty N y N y N y       

3 3 4 4 6 6
( )top top top top top top topy N y N y N y                              (3.14) 

where, the coordinates in the parentheses represent the higher order element. 

 

The total displacements at a point is given by 

1 1 2 2 5 5
( )bot bot bot bot bot bot botu N u N u N u       

3 3 4 4 6 6
( )top top top top top top topu N u N u N u       

1 1 2 2 5 5
( )bot bot bot bot bot bot botv N v N v N v       

3 3 4 4 6 6
( )top top top top top top topv N v N v N v                              (3.15) 

The isoparametric shape function for a lower order line interface element is defined by 

     
1 3

1
1

2

bot topN N     ,  

     
2 4

1
1

2

bot topN N                                     (3.16) 

and eq. (3.17) is expressed for the higher order element. 

     
1 3

1
1

2

bot topN N       ,  

     
2 4

1
1

2

bot topN N      ,  

     
5 6

21bot topN N                                      (3.17) 
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(5 and 6 nodes represent the higher order elements of 2-D line interface elements.) 

The relative displacement-element displacement matrix B  can be expressed considering the 

difference between the normal-tangential direction and the element coordination system. 
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3-5 Surface Interface Element 

 

                                          Figure 3-(5) Surface interface element  

Midas FEA provides surface interface elements, which are lower and higher order triangular and 

quadrilateral elements as shown in Fig. 3-(5). The surface interface elements are used to analyze 

the interface behavior between solid elements or between shell and solid elements. 

 

The global coordinates of an arbitrary point in a quadrilateral interface element are defined by the 

shape function as expressed in Eq. (3.18) 

 

1 1 2 2 3 3 4 4

9 9 10 10 11 11 12 12
( )
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x N x N x N x N x

N x N x N x N x
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       
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5 5 6 6 7 7 8 8

13 13 14 14 15 15 16 16
( )

top top top top top top top top top

top top top top top top top top

x N x N x N x N x

N x N x N x N x

       

       
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z N z N z N z N z
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       
             (3.18) 

The total displacements of an arbitrary point in a quadrilateral element are defined by using the 

isoparametric shape function as expressed in Eq. (3.19) 

1 1 2 2 3 3 4 4
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             (3.19) 

The isoparametric shape function of a 3-dimensional surface interface element is defined by the 

equations below. 
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The shape function of an 8-node interface element 
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bot topN N                         (3.20) 

 

The shape function of a 16-node interface element 
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      
12 16

21
, , 1 1

2

bot topN N                                 (3.21) 

The shape function of a 6-node triangular interface element 

   
1 4

, , 1bot topN N         , 

   
2 5

, ,bot topN N      , 

   
3 6

, ,bot topN N                                           (3.22) 

 

The shape function of a 12-node triangular interface element 
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, , 2 1bot topN N         

     
7 10

, , 4 1bot topN N           

   
8 11

, , 4bot topN N       

     
9 12

, , 4 1bot topN N                                     (3.23) 

The integration points are located in the mid-plane between the top and bottom faces. Since the 

Newton-Cotes scheme is used for integration, the integration points are located on the nodal 

positions. 
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The relative displacement-element and displacement matrix of the surface interface element is 

identical to matrix B  which is expanded from 2 dimensional. 
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3-6 Finite Element Formulation 

 

The tractions in the local coordinate system are derived from the relative displacements in the 

local coordinate system 
xu , yu  and 

zu  of the interface element and the stiffness matrix 

D. 

x x

y y

z z

   
   

    
      

t u

t D u

t u

      (3.24) 

The stiffness matrix can be obtained by variation of the strain energy equation for the interface 

element and is given by  

inter

T

inter interd


 K B DB      (3.25) 

And the internal force is given by 

T

inter inter d


 F B t       (3.26) 

Expanding Eq. (3.26) into a numerical integration expression, the following equation of the 

stiffness matrix of the interface element is obtained: 

1

det
Nip

Tj j j

inter inter inter

j

K B DB J      (3.27)  

where, Nip  is the number of integration points for the interface element. 
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3-7 Interface Element Output 

 

Tractions and relative displacements are produced as the analysis results of interface elements. 

The sign convention follows the local element coordinate system. The tractions and relative 

displacements are defined in the nodes of the elements such that corresponding nodes at both 

sides have equal result values. The types of output for tractions and relative displacements for the 

interface elements are as follows: 

 Traction components                , ,x y zt t t  

 Relative displacement component s , ,x y zu u u    

Since tractions and displacements at a node are calculated from the Newton-Cotes Integration 

method, the results at the integration points are shared at the nodes. The integration points of the 

interface elements are given by: 

 1+1-node point element: 1 point Newton-Cotes integration 

 2+2-node line element: 2 point Newton-Cotes integration 

 3+3-node line element: 3 point Newton-Cotes integration 

 3+3-node triangular element: 3 point Newton-Cotes integration 

 4+4-node quadrilateral element: 4 point Newton-Cotes integration 

 6+6-node triangular element: 6 point Newton-Cotes integration 

 8+8-node quadrilateral element: 8 point Newton-Cotes integration 
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4-1 Linear Static 

 

The basic equation for linear static analysis is represented by (4.1). The structural stiffness matrix 

K, the load vector p and the displacement vector u are defined in the global coordinate system 

(GCS). Users are advised to assign sufficient constraints and/or supports for the structural model 

to avoid any rigid body motion and singular errors. 

 

Ku p           (4.1) 

where,    

K   : Stiffness matrix of structure in GCS 

u   : Displacement vector in GCS 

p   : Load vector in GCS 

 

Chapter 4. Linear Analysis 
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4-2 Linear Static with Nonlinear Elements 

 

MIDAS offers truss and elastic link elements with compression only and tension only 

characteristics. For these nonlinear elements the actual values of the stiffness matrix are 

dependent on the calculated stress in the truss or elastic link element. For a tension only element 

the stiffness matrix will be set to zero when a compressive stress is found in the nonlinear element, 

while for a compression only element the stiffness will be set to zero when a tensile stress is found 

in the nonlinear element. In case a linear static analysis is performed on a model that includes 

these nonlinear elements, an iterative procedure is applied for making the stiffness and stresses in 

these nonlinear elements in agreement with each other, as illustrated in the diagram below.  

 

The linear and nonlinear element stiffness matrices are calculated together with the unbalance 

between stresses in the model and the external applied loading forces. This linear set of equations 

is solved, resulting in a change of displacements. The total stresses in the nonlinear elements are 

calculated and evaluated. If the stresses in the nonlinear elements are in agreement with the actual 

nonlinear element stiffness matrices, then the result will be accepted, otherwise the respective 

element stiffness will be adapted and a new displacement change will be calculated and 

corresponding total stresses will be evaluated.  

 

Please note that the results from an analysis including nonlinear elements, is in principle a 

nonlinear solution and may therefore not be linearly combined with results from other load cases. 

In such case the full load combination must be included in the external load-vector before 

calculating the displacements and stresses/forces. 
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INPUT DATA

Solve Linear Equation

Results by accumulated Displ.

Linear & Nonlinear Element 
Stiffness, Unbalanced Force

 ,   K + K U Pn s

 U U

Evaluate Convergence
     No

Yes

 

 

where, 

 

K     : Stiffness of linear members 

nsK   : Stiffness of nonlinear members 

,U U : Incremental and accumulated displacements due to unbalanced forces 

P    : Unbalanced forces (external-internal) 
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5-1 Introduction 

 

Eigenvalue analysis for analyzing the dynamic behavior of structures is also referred to as “free 

vibration analysis”. For a system without damping and with no excitation, the motion equation is 

the 2nd order linear differential equation (5.1). 

( ) ( )t t Mu Ku 0      (5.1) 

where, 

K  : Stiffness matrix of structure 

M  : Mass matrix of structure 

u(t) : Displacement vector of structure 

ü(t) : Acceleration vector of structure 

 

If the displacement vector u  is assumed to be a linear combination of mode-shape-vectors, 

defined by the mode shape matrixΦ , and the combination factors for the selected modes are 

defined by a vector of time-functions ( )tY , we can replace the displacement vector ( )tu ΦY . 

By substituting the expression for u in equation (5.1) the following equation is obtained: 

MΦY +KΦY 0      (5.2) 

The time function, ( )tY is defined as. 

 1( ) ( ) ( ) ( )
T

m nt y t y t y tY      (5.3) 

where n  is the total number of degrees of freedom in the system. 

 

When we assume that the combination factors ym(t) are harmonic functions in time 

 

 ( )my t  : cos( )m mt   

 

Chapter 5. Modal Analysis 
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The second derivative )(tym


 with time of the harmonic function can be written as inverse 

multiplication with a constant factor λm = ωm
2 of the original function ym(t) : 

 

 )()( tyty mmm 


    (5.3.1) 

 

Subsequently we can use this assumption to transform the equation (5.3) into, 

( )  MΦΛ KΦ Y 0     (5.4) 

where the matrices Λ  and Φ  are formulated as below. 

 

1

m

n







 
 
 
 
 
 
 
 

Λ





,   2

m m      (5.5) 

 1 m n  Φ       (5.6) 

The equation (5.4) must be valid for every harmonic function, that means for every ( )my t , it can 

be transformed into. 

0m m m   K M       (5.7) 

Equation (5.7) is an eigenvalue problem, which must satisfy the condition of equation (5.8) and 

from this condition the free vibration modes can be calculated. 

0m K M      (5.8) 

Equation (5.8) has n number of solutions (eigenvalues)
1 , 

2 , …, 
n  that satisfy the condition 

(5.8) and equal to the number of degrees of freedom of the finite element model. Usually the 

eigenvalues are ordered such that λ1 is the smallest eigenvalue. For each eigenvalue,
m a 

corresponding eigen mode,
m  exists. Since the mass matrix, M  and the stiffness matrix, K  in 
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equation (5.7) are symmetrical, the eigenvalue,
m  and the eigen mode,

m  are real numbers. 

Because the mass matrix is positive definite, and the stiffness matrix is positive semi-definite 

0m  . As such the circular frequency,
m  under the condition of undamped free vibration is a 

real number. 

A structure vibrates in the eigen mode shapes of 
m  without external excitation, and the 

velocities are circular frequencies, ( / )m radian time . The velocities of a structure are expressed 

in terms of natural frequencies, ( / )mf cycle time  or natural periods, ( / )mT time cycle . The 

relationship betweenm
, 

mf  and 
mT  is given below. 

1
m

m

T
f

,  
2




 m

mf      (5.9) 

Generally the eigenvalue,
m  represents the ratio of the strain energy to the kinetic energy for the 

m-th mode shape, and the modes are referred to as 1st mode, 2nd mode, …, n-th mode from the 

smallest ratio onward. Fig. 5-(1) shows the fr 

ee vibration modes of a cantilever from the 1st to 3rd mode. 

t t t

u u u

 

Figure 5-(1) Vibration of a Cantilever 
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MIDAS calculates indices of the dynamic properties of a structure such as modal participation 

factors, effective modal masses and modal direction factors. The values of the directional modal 

participation factors are calculation by equation (5.10), which are used for response spectrum 

analysis or time history analysis of a structure subjected to seismic loads.  

 

, ,

, ,

  

     

  

     

     

     

M1 M1 M1

M M M

M1 M1 M1

M M M

T T T
m X m Y m Z

mX mY mZT T T

m m m m m m

T T T

m RX m RY m RZ
mRX mRY mRZT T T

m m m m m m

  (5.10) 

where, 

, ,  mX mY mZ
 

: Modal participation factors in the GCS X, Y and Z 

translations for the m-th mode 

, ,  mRX mRY mRZ
 

: Modal participation factors in the GCS X, Y and Z 

rotations for the m-th mode 

, ,1 1 1X Y Z
 

: Directional vectors, which retain unit values only for the 

translations in the X, Y and Z directions 

, ,1 1 1RX RY RZ
 

: Directional vectors, which retain unit values only for the 

rotations in the respective X, Y and Z directions 

m  : mth mode shape 

 

The directional values of the modal participation masses for each mode are calculated according 

to equation (5.11). Since the calculation includes the signs (positive or negative) of the modes, the 

values can be 0 depending on the mode shapes. The sum of the directional participation masses 

for all the modes is equal to the total mass of the structure in each corresponding direction. 

General seismic design codes require that the sum of the modal participation masses included in 

the analysis of a structure in each direction be at least 90% of the total mass. This is intended to 

include most of the major modes, which influence the analysis results.  
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2 2 2

* * *

2 2 2

* * *

, ,

, ,

  

     

  

     

     
       

     
       

M1 M1 M1

M M M

M1 M1 M1

M M M

T T T

m X m Y m Z

mX mY mZT T T

m m m m m m

T T T

m RX m RY m RZ

mRX mRY mRZT T T

m m m m m m

M M M

M M M

 (5.11) 

where, 

* * *, ,mX mY mZM M M  
: Modal participation masses in the GCS X, Y and Z translations for        

the m-th mode 

* * *, ,mRX mRY mRZM M M  
: Modal participation masses in the GCS X, Y and Z rotations for 

the m-th mode 

 

The directional coefficient for each mode represents the ratio of the directional participation mass 

to the total participation mass for the corresponding mode.  

 

MIDAS uses the Lanczos and subspace iteration methods which are suitable for analyzing large 

systems of eigenvalue problems such as equation (5.7) . 
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5-2 Lanczos Iteration Method 

 

The Lanczos iteration method finds approximate eigenvalues using a tri-diagonal matrix,
kT , 

which can be found by defining the Krylov subspace 
1 2{ , ,..., }kspan V V V  . In order to 

effectively apply the Lanczos iteration method to the free vibration eigenvalue problem as 

expressed in equation (5.7),  the eigenvalue,
m must be replaced by 1/m m    . This is 

referred to as a shift-invert technique.  is the expected first eigenvalue. The Lanczos iteration 

calculation process applying the shift-invert technique is described in below. 

  

- Assume an initial value
1V for the block vector in case of first iterative calculation. 

- Multiply the mass matrix                
k kU MV  

- Solve linear simultaneous equations       ( ) k k K M W U  

- Orthogonalize 
kW                    *

1 1

T

k k k k  W W V B  

- Calculate matrix
kC                    *

k k kC V MW  

- Orthogonalize *

kW                    ** *

k k k k W W V C  

- Normalize the block vector              **

1k k kW V B  

 

MIDAS uses the block vector,
kV  for effectively calculating eigenvalues. This is referred to as 

the Block Lanczos method. The block tri-diagonal matrix,
kT , which takes place in the process of 

iterative calculations above, is as follows: 

 

1 1

1 2

1 1

1

T

k

T

k k

T

k k

 



 
 
 
 
 
 
 
 

C B

B C

T

C B

B C



  



     (5.12) 
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If 
kT  is used to solve the eigenvalue problem, * * *

k m m m  T , *

m  can be obtained using 

* *1/m m    . *

m  is an approximate value of the original eigenvalue problem of Eq. (5.7). If 

bN  is defined to be the block size of 
kV , the size of

kT increases to as much as 
bN and *

m  

converges to m , as the number of iterations increases in the process of iterative calculations. 

The approximate value, *

m  of the eigenmode,
m  can be obtained by the equation below, which 

converges with *

m . 

 

 * *

1 2 3 ...m k m  V V V V     (5.13) 

The convergence criterion for eigenvalues and eigenmodes calculated from the Lanczos iteration 

method is noted below. 

 

* * *

m m m  





K M

K
     (5.14) 

 

Where, .  means 2-norm. MIDAS uses 
162.22 10   . 
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5-3 Subspace Iteration Method 

 

The Subspace method searches for a set of 
sN  orthogonal vectors Xk that expand over the 

subspace
kE that is defined by the eigen modes 1 2 ..

sN      For large systems the 

number of Ns is much smaller than the number of degrees of freedom in the finite element model.  

The iterative process of calculating the set of vectors
kX  is explained below.  

 

- Assume a first set of Ns vectors
1X and call this Xk 

- Calculate vector Yk with length Ns by solving linear set of equations 
k kKY MX  

- Calculate the projection of stiffness in Ek  1

T

k k k K Y K Y 

- Calculate the projection of mass Ek   1

T

k k k M Y MY  

- Solve projected eigenvalue problem of size Ns  
1 1 1 1 1k k k k k    K Q M Q Λ  by 

using classical eigenvalue solution techniques 

* * *

1 1 2 ...
sk N  

   Q           

*

1

*

2

1

*

s

k

N









 
 
 
 
 
  

Λ


 

Calculating 
1kX  by 

1 1k k k X Y Q and repeating these steps until *

n and 
kX ,  

individually converge to Ns eigenvalues and Ns eigen modes of the system 

*

1 2, ...
sm m k N       X    (5.15) 

If 
kX is composed of 

sN  vectors, the sizes of 
kK and 

kM  are 
s sN N , irrespective of 

the number of iterations in the process of iterative calculations.  The convergence of eigenvalues 

calculated by the subspace iteration method is evaluated by the change of
*

m .   

 

( 1) ( )

( 1)

k k

m m

k

m

 









      (5.16) 
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5-4 Optional Parameters 

 

5-4-1 Mass Matrix 

 

Two types of mass matrices can be used in an eigenvalue analysis, which are the consistent mass 

matrix and the lumped mass matrix. When the consistent mass matrix is applied, this generally 

results in higher eigenvalues compared to the theoretical values. Whereas using the lumped mass 

matrix results in smaller eigenvalues. It is known that using the consistent mass matrix results in 

better convergence than using the lumped mass matrix depending on the number of elements. The 

drawback however is that the consistent mass matrix requires more calculations and memory (see 

figure 5-(2) ). 

 

 

Figure 5-(2) Lumped Mass vs Consistent Mass   

 

5-4-2 Parameters for Lanczos Iteration 

 

When calculating eigen frequencies using the Lanczos iteration method in MIDAS two 
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frequencies, 
1f  and

2f  can be specified by the user for defining the range of interest of eigen 

frequencies. The range of interest of frequencies is used in the calculation to define the expected 

eigenvalues to 2

1(2 )f   by the shift-invert technique. Fig. 5-(3) shows the range and 

sequence of calculating eigenvalues for combinations of 
1f  and 

2f . If fN is defined as the 

number of eigenvalues to be calculated, the number of each calculated eigenvalues is determined 

based on
1f  and 

2f  as, 

  

- If 
1 2f f  : The fN  frequencies closest to 

1f  are calculated. 

                - If 
1 2f f  : The fN  frequencies closest to 

1f  within the range,
1 2[ , ]f f are calculated. 

- If 
1 2f f  : The fN  frequencies closest to 

2f  within the range,
1 2[ , ]f f are calculated.  

 

1234
f

2
f

1
f

1 2 3 4
f

1
f

2
f

1 2 34
f

1     2
f  f

 

Figure 5-(3) Eigenvalue Searching Direction 

 

The default values of 
1f  and 

2f , in the range of interest are 
1 2 0f f  . 

 

(1) Sturm Sequence Check 

 

When eigenvalues are calculated using an iteration method, there is a possibility that higher 

eigenvalues are found before the lower eigenvalues. MIDAS provides functionality, which 
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prevents that frequencies are skipped. When applying the Lanczos iteration method the vector Wk 

is calculated by solving the following set of equations: 

( ) k k K M W U      (5.17) 

In order to solve the equations, the matrix is decomposed by the matrices T
LDL  and the 

number of negative values in the diagonal terms in the matrix, D  is calculated.  The number 

represents the number of eigenvalues,
n that are smaller than . For example, if 

fN     

and the matrix is decomposed, we can find eigenvalues that are smaller than 
fN  . If the 

number of eigenvalues smaller than 
fN  is greater than fN , the process of the Lanczos 

iteration continues until all the omitted eigenvalues are converged. At this point,   should 

satisfy the relationship below. 

1f f fN N N           (5.18) 

This condition to δ is called the Sturm-sequence check. When MIDAS performs a Sturm sequence 

check, the size of the Lanczos block vector, 
kV  is set to 7bN   to speed up the calculations. 

For limiting the computational effort MIDAS also provides an option to skip the Sturm sequence 

check .   

 

(2) Rigid Body Mode 

 

When a free-vibration analysis of a structure with insufficient boundary conditions is performed, 

K  will be a singular matrix and the calculations cannot be progressed with 0  . In such a 

case, the shift-invert technique is applied with a negative value for . In this case the calculated 

eigenvalues will include a 0 for every rigid mode. MIDAS predicts the expected first mode 

frequency, 1  using the diagonal terms of the matrices K and M and sets 1   . 
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5-4-3 Parameters for Subspace Iteration 

 

The subspace iteration method in MIDAS allows the user to set the size, 
sN  of the subspace, 

kX , the number of maximum iterations,
IN  and the convergence criterion,   in Eq. (5.16). 

The actual size of subspace, 
sN  used for the calculations is as follows: 

_ 0max{ ,min(2 , 8)}s s f fN N N N     (5.19) 

Where, _ 0sN  is the user input 
sN  value. 

The default value for the maximum number of iterations is 30IN  . The default value for the 

convergence criterion is 
61.0 10   .   
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6-1 Time History Analysis 

 

When a structure is subjected to a dynamic load, the behavior is described by the dynamic motion 

equation given by (6.1).  

 

( ) ( ) ( ) ( )t t t t  Mu Cu Ku F                   (6.1) 

where,  

 

 

 

 

 

 

In case there is no external excitation ( )t F 0 and the damping matrix C = 0, the equation (6.1) 

will reduce to the free vibration equation (5.1).  

However, if ( )tF is an external force (or external displacement, velocity, acceleration, etc.), 

which varies with time, the equation (6.1) becomes a forced vibration analysis problem. For this 

type of problems MIDAS provides a modal superposition method as well as a direct integration 

method..  

 

 

 

 

 

 

 

 

 

M  : Mass matrix 

C  : Damping matrix 

K  : Stiffness matrix 

( )tF  : Dynamic load vector 

( )tu , ( )tu & ( )tu : Displacement, Velocity & Acceleration vector 

Chapter 6. Time History Analysis 
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6-2 Modal Superposition Method 

 

The modal superposition method makes use of the orthogonality of eigen modes and decomposes 

the equation (6.1) into independent mode equations. This method assumes that the damping 

matrix is composed of a linear combination of the mass matrix and the stiffness matrix. The 

displacement vector is obtained by a linear combination of a selected number n of orthogonal 

eigen modes as expressed in equation (6.2).  

 ( ) ( )
n

i

i j

t t Y


 u Y  i(t)                         (6.2) 

By substituting equation (6.2) into equation (6.1), we get  

( ) ( ) ( ) ( )t t t t  MΦY CΦY KΦY F                   (6.3) 

Multiplying equation (6.3) by T

m (m-th mode shape), the equation (6.4) is obtained.  

( ) ( ) ( ) ( )T T T T

m m m mt t t t  MΦY CΦY KΦY F               (6.4) 

The mass and stiffness matrices can be orthogonalized to eigen modes as,  

 

T

i j ij ij

T

i j ij ij

m

k

  

  





M

K
                                  (6.5) 

 

where, ij : Krönecker Delta (  ;  ,   ; ij iji j 1 i j 0     ) 

Using the above orthogonality, the dynamic motion equation (6.3) can be decomposed into n 

independent equations.  

( ) ( ) ( ) ( )T T T T

m m m m m m mY t Y t Y t t  M C K F         ( )m 1,2,.....,n   (6.6) 

The above n independent decomposed equations thus become dynamic motion equations for a 

single degree of freedom in a general coordinate system.  
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Subsequently we rearrange equation (6.6)  

  

 
( )T

2 m
m m m m m m T

m m

t
Y ( t ) 2 Y ( t ) Y ( t )    

F

M



 
             (6.7) 

where,  

2

2
T

m m
m m T

m m

T

m m
m T

m m

 







C

M

K

M

 

 

 

 

 

m : mth mode damping ratio 

m : mth mode natural frequency 

( ), ( ) & ( )m m mq t q t q t  : mth mode general displacement, velocity and acceleration 

 

Displacement response in the general coordinate system is obtained by equation (6.8).  

( )

0

(0) (0)
( ) (0)cos sin

1
          ( ) sin ( )

m m

m m

t m m m m
m m Dm Dm

Dm

t
t

m Dm

m Dm

q q
q t e q t t

P e t d
m

 

  

 
 



   




 

 
  

 

 

      (6.8) 

where, 
21Dm m m           

 

The displacement response of a structure is obtained by substituting the general displacement of 

each mode, which is obtained by the single degree of freedom equation (6.8), into the system 

equation (6.2). The accuracy of the displacement response in the modal superposition method 

depends on the selected modes used for analysis. The modal superposition method is most widely 

used by structural analysis programs, and it is effective in linear dynamic analyses of large 

structures. However, this method cannot be used for nonlinear dynamic analysis; nor can it be 

used in case damping devices are included and their properties cannot be assumed on the basis of 

a linear combination of stiffness and mass.  
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6-3 Direct Integration Method 

 

Using the direct integration method is one in which the total analysis time range is sub-divided 

into a number of finite time steps, and numerical integration of the dynamic equilibrium equation 

is performed at each time step. This method can be applied to systems reflecting nonlinearity of 

stiffness and/or damping. Since the direct integration method evaluates the dynamic motion 

equation at every time step, the analysis time increases with the number of time steps. 

  

A variety of methods can be applied for numerical integration. MIDAS uses the average 

acceleration method of the Newmark-β method in which the acceleration ( )tu in the time range 

1i it t t    is assumed to be constant at the average of
iu and

1iu  in Eq. (6.9).  

 

1( ) .
2

i it const
 

u u
u

 
            (6.9) 

Consequently, the velocity and displacement at t =
1it 

 are expressed as, 

 

1
1

2

i i
i i t



  

u u
u u

 
                               (6.10) 

21
1

4

i i
i i i t t



    

u u
u u u

 
                          (6.11) 

Expressing the equations (6.10) and (6.11) with the integration variables of the Newmark-β 

method,  

 1 11i i i it t       u u u u                                   (6.12) 

2 2

1 1

1

2
i i i i it t t  

 
        

 
u u u u u                         (6.13) 
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where,  =0.25,  =0.5. 

 

Rearranging the equation (6.13) gives the following expression for the acceleration at the end of 

the time-step, 

 

2

1 12

1 1

2
i i i i it t

t



 

  
        

   
u u u u u                      (6.14)  

 

Substituting equation (6.14) into equation (6.12) and rearranging it, gives the following 

expression for the velocity at the end of the time-step,  

 

1 1 1 1
2

i i i i it
t t

   

   
 

   
         

     
u u u u u                (6.15) 

 

The equations (6.14) and (6.15) are substituted into the dynamic motion equation, which is 

rearranged for the displacement response
1iu at the end of the increment as follows:  

 

12

2

1

1 1 1
1 1 1

2 2

i

i i i i i i

t t

t
t t t



 

  

     



 
 

  

           
                  

             

M+ C+K u

F M u u u C u u u   

  

(6.16) 

Substituting the displacement
1iu  at the time

1it 
 as defined in equation (6.16) into equations 

(6.14) and (6.15), the velocity and acceleration at the end of the increment as function of status at 

the beginning of the increment only can be obtained.  

 

Rayleigh damping expressed in equation (6.17) is used for damping in the direct integration 
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method. 

 

Rayleigh Damping: 
0 1a aC = M K                 (6.17) 

where, 
0a  & 

1a : Proportional constants for mass and stiffness for damping calculation 

 

By substituting the equation (6.17) into equation (6.16), the dynamic motion equation is expressed 

as,  

 

1 2
12

1 22

1
1

1 1 1
1

2

i

i i i

a a

t t t

a a
t t

 

  

  



     
     

       

   
       

    

M+ K u

=F M u u u D KD 

    (6.18) 

 

where, 1 1
2

i i it
t

  

  

   
       

    
D = u u u   

 

The solutions for the dynamic motion equation that are found through time history analysis are the 

relative displacement ( )tu , the relative velocity ( )tu and the relative acceleration ( )tu . When a 

structure is subjected to dynamic loads such as ground acceleration, the absolute response of the 

structure is obtained by adding the relative response and the ground response as expressed in 

equation (6.19).  

, 1 1g i i u u  : Absolute acceleration 

     , 1 1g i i u u  : Absolute velocity          (6.19) 

     , 1 1g i i u u : Absolute displacement 
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where, , 1g iu , , 1g iu  & , 1g iu  are ground acceleration, velocity & displacement respectively. 

 

In MIDAS, ground velocity and displacement due to ground acceleration are calculated by using 

the linear acceleration method (equation 6.20), which are applied to calculating the absolute 

response in the modal superposition and direct integration methods.  

 

, 1 , 2
, 1 , ,

, 1 ,2 3
, 1 , , ,

1

2

1 1

2 6

g i g i
g i g i g i

g i g i
g i g i g i g i

t t
t

t t t
t








    




      



u u
u u u

u u
u u u u

 
  

 
 

  (6.20) 
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6-4 Damping 

 

In MIDAS, the following damping methods are used depending on the method of dynamic 

analysis.  

 

Selection of damping for time history analysis by response spectrum and modal superposition:  

- Modal 

- Mass & Stiffness Proportional (Rayleigh damping) 

 

Selection of damping for time history analysis by direct integration: 

- Mass & Stiffness Proportional (Rayleigh damping) 

 

6-4-1 Rayleigh Damping 

 

The damping matrix in Rayleigh Damping is composed of the linear combination of the mass 

matrix and the stiffness matrix of a structure as shown in Fig. (6-1b). If the damping integer 
r  

and the natural frequency 
r  for the rth mode and the damping integer

s and the natural 

frequency 
s  for the sth mode are given, the Rayleigh damping matrix is expressed below. 

Notice that the r th and s th modes represent the two main modes of the structure. 

 

0 1a a C M K              (6.21) 

1
  

2

0
i 1 i

i

a
a 



 
   

 
            (6.22) 

where, 

   
 

 
r s r s s r

0 2 2

s r

2
a

     

 

    



, 

 

 
s s r r

1 2 2

s r

2
a

   

 

  



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i

Natural frequencies

Mass Proportional

Stiffness Proportional

i

1 2 3 4

0aC M

0

2
i

i

a





1

2

i
i

a 
 

1aC K

 

(a) Mass Proportional Damping and              (b) Rayleigh Damping 

                   Stiffness Proportional Damping 

Figure 6-(1) Variation of modal damping ratios with natural frequency 

 

 

6-4-2 Modal Damping 

 

For modal damping, the user directly defines the damping ratio for each mode. Modal damping 

can be used for time history analysis, by response spectrum analysis and the modal superposition 

method. When the response spectrum analysis and modal superposition method are used, the 

kinematic equation of the structure is decomposed by modes to which the modal damping ratios 

defined by the user are applied.  
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6-5 Cautionary notes 

 

The accuracy of analysis depends greatly on the time interval used in analysis. Improper time 

interval may result in inaccurate solutions. In particular, the size of the time interval is closely 

related to the maximum frequency of movement of the structure. In general, one-tenth of the 

highest modal period under consideration is a reasonable value for the time interval. In addition, 

the time interval should be smaller than that of the applied load. A dynamic load needs to 

sufficiently depict the change in the total loads. MIDAS linearly interpolates the excitation loads.  
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7-1 Response Spectrum Analysis 

 

Response spectrum analyses are generally carried out for seismic designs using the design spectra 

defined in design standards. Response spectrum analysis assumes the response of a multi-degree-

of-freedom (MDOF) system as a combination of multiple single-degree-of-freedom (SDOF) 

systems. A response spectrum defines the peak values of responses corresponding to and varying 

with natural periods (or frequencies) of vibration that have been prepared through a numerical 

integration process. Displacements, velocities and accelerations form the basis of a spectrum. 

To predict the peak design response values, the maximum response for each mode is obtained first 

and then combined by an appropriate method. 

 

Equation (7.1) shows the dynamic motion equation for a structure subjected to a ground motion 

used in a response spectrum analysis. 

[ ( ) ( )] ( ) ( )

( ) ( ) ( ) ( )

   

   

M u r Cu Ku 0

Mu Cu Ku Mr

  

  

g

g

t u t t t

t t t u t

                         (7.1) 

where,   

 

 

 

 

 

 

 

 

If the displacement, ( )u t is expressed in terms of a combination of modal displacements using the 

eigen mode shapesΦ , obtained from undamped, free vibration analysis, equation (7.2) is 

M  : Mass matrix 

C  : Damping matrix 

K  : Stiffness matrix 

r  : Directional vector of ground acceleration 

( )
gu t  : Time history of ground acceleration 

( )u t , ( )u t  & ( )u t  :  Relative displacement, 

                    velocity and acceleration 

Chapter 7. Response Spectrum 
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applicable. 

( ) ( )u Φyt t        (7.2) 

Now we substitute equation. (7.2) into equation (7.1) and multiply both sides byΦT , resulting in  

( ) ( ) ( ) ( )   Φ MΦy Φ CΦy Φ KΦy Φ Mr  T T T T

gt t t u t    (7.3) 

The relationship below is found due to orthogonality of the eigen modes. 

  0 ( )i jor or i j   M C K     (7.4) 

Accordingly, if the dimensionless eigen mode shape ( 1T Φ MΦ ) for mass is applied to 

equation (7.3), we obtain the independent simultaneous differential equations for each mode.  

 

2
1 1 1

2

2

21

( ) ( ) ( ) ( )21

21

  

  

  

   
   
   
       
   
   
   

     

y y y Φ Mr

 

  

 

T

gm m m

n n n

t t t u t     

       (7.5) 

And rearranging the expression for the m-th mode in equation (7.5) results in. 

 

2( ) 2 ( ) ( ) ( )  



   

  Mr

  
m m m m m m m g

T

m m

y t y t y t u t

                (7.6) 

The modal participation factor, m
 in equation (7.6) is defined by the multiplication of the 

dimensionless mode shape for mass φm, the mass matrix M and the directional vector of ground 

acceleration r. The directional vector of ground acceleration contains unit value only for the 

degree of freedom in the direction of ground acceleration and all other components are equal to 

zero. The solution to the dynamic equilibrium equation of a structure under ground acceleration 



 

 

Chapter 7  |  Response Spectrum 

m
id

a
s 

F
E

A
 

192 We Analyze and Design the Future 

action is obtained by solving the n equations of (7.6) and then combining them in the same way as 

equation (7.7).  

( ) ( ), ( ) ( ), ( ) ( )  u Φy u Φy u Φy   t t t t t t                     (7.7) 

The concept of the dynamic equilibrium equation subjected to a ground acceleration action in 

response spectrum analysis follows the equations (7.1) to (7.7). In response spectrum analysis, 

spectrum functions are used to obtain the results for each mode rather than defining the seismic 

acceleration as a specific function. Generally, the spectrum function means the maximum value 

for each period in equation (7.5). The spectrum function is defined in various design codes and 

specifications, which consider the probabilities of seismic accelerations, characteristics of regions 

and importance of structures. The solutions to a single d.o.f system corresponding to the m-th 

mode like equation (7.6) are found by multiplying the displacement, velocity and acceleration 

obtained from the spectrum function by the corresponding modal participation factors as equation 

(7.8). 

2
,

, ,

 
 

      

am am
dm vm

m m

m m dm m m vm m m am

S S
S S

y S y S y S

    (7.8) 

 

The results for each mode are calculated by multiplying the results of equation (7.7) by the mode 

shapes as in equation (7.9). 

, ,       u u u 
m m m dm m m m vm m m m amS S S         (7.9) 

where, 

 

 

 

 

Since the analysis results for each mode pertain to only the maximum values, it is not possible to 

perform linear combinations as done in time history analysis. Therefore, the final results of a 

dmS  : Spectral displacement of mth mode  

vmS  : Spectral velocity for of mth mode  

amS  : Spectral acceleration of mth mode  
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response spectrum analysis are obtained by a modal combination of the analysis results for each 

mode in equation (7.9). 

 

MIDAS enables us to analyze response spectrum in any direction on the X-Y plane and in the Z-

direction in the global coordinate system. The user can choose one of the 3 methods for modal 

combination, which are ABS (Absolute Sum), SRSS (Square Root of the Sum of the Squares) and 

CQC (Complete Quadratic Combination) methods. 

 

 

                ABS (ABsolute Sum) 

max 1 2 nR R R R      
                   (7.10) 

SRSS (Square Root of the Sum of the Squares) 

1 2
2 2 2

max 1 2 nR R R R                                  (7.11) 

CQC (Complete Quadratic Combination) 

1 2

max

1 1


 

 
  
 


N N

i ij j

i j

R R R                             (7.12) 

3 2

2 2 22 2 2

8 ( )

(1 ) 4 (1 ) 4( )

   


  




    

i j i ij m ij

ij

ij i j ij ij i j ij

r r

r r r r
  

2 3 2

2 2 2 2

8 (1 )
( )

(1 ) 4 (1 )

ij ij

ij i j

ij ij ij

r r

r r r


   




  

  
 


 


 i

ij j i

j

r   

0 1 1 ( )    ij ij i j  

 

 



 

 

Chapter 7  |  Response Spectrum 

m
id

a
s 

F
E

A
 

194 We Analyze and Design the Future 

where,  

 

 

 

 

 

 

In equation (7.12), when i = j, then ρij = 1 regardless of the damping ratio (
i , j ). If the damping ratio 

becomes zero (0), both CQC and SRSS methods produce identical results. The ABS method produces the 

largest combination values among the three methods. The SRSS method has been widely used in the past, 

but it tends to overestimate or underestimate the combination results in the cases where the values of 

natural frequencies are close to one another. As a result, the use of the CQC method is increasing recently 

as it accounts for probabilistic inter-relations between the modes.  

 

Example 

 

If we now compare the natural frequencies and displacements for each mode for a structure having 3 

DOF’s with a damping ratio of 0.05, the results from the applications of SRSS and CQC are as follows:  

 

Natural frequencies   

1 2 30.46 , 0.52 , 1.42      

 

Response spectrum value for each mode: ijD (displacement component of i-th degree of freedom 

for j-th mode) 

0.036 0.012 0.019

0.012 0.044 0.005

0.049 0.002 0.017

 
        
  

ijD  

maxR  : Peak response 

iR  : Peak response (spectrum value) of i
th mode 

ijr  : Eigenvalue ratio of j th mode to i
th mode 

 i
, j

 : Eigenvalues of i
th and j th modes 

, i j
 : Damping ratios of i th and j th modes 
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SRSS method results 

1 2
2 2 2

max 1 2 3

0.042

0.046

0.052

R R R R

 
        
  

 

CQC method results 

 

12 21 0.3985  
 

13 31 0.0061  
 

23 32 0.0080  
 

1 2
2 2 2

max 1 2 3 12 1 2 13 1 3 23 2 3

0.046

2 2 2 0.041

0.053

R R R R R R R R R R  

 
           
  

  

Comparing the two sets of displacements for each degree of freedom, we note that the SRSS method 

underestimates the magnitude for the first degree of freedom but overestimates the value for the second 

degree of freedom relative to those obtained by CQC. Thus, the SRSS method should be used with care 

when natural frequencies are close to one another. 
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7-2 Spectrum Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-(1) Response spectrum curve and linear interpolation of spectral data 

 

 

In response spectrum analysis, results for each mode are calculated by using spectrum functions. 

Generally, the spectrum functions are composed of the maximum values of time history analysis 

results obtained from equation (7.6). Once the damping ratio  and the seismic acceleration 

varying with time ( )
gu t are defined, solutions to equation (7.6) can be found according to the 

natural periods of the structure. Fig. 7-(1) shows how the spectrum functions are determined using 

a plot of the results of displacement, velocity and acceleration vertically against the periods of the 

S
p
e
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ta

 

Period (Sec) 
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7 6
x x
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structure horizontally. Spectrum functions used in response spectrum analysis are generally 

provided by various design codes. MIDAS generates spectrum functions used in seismic analysis 

according to a selected design codes by simply entering the dynamic factor, foundation factor, 

zoning factor, importance factor, response modification factor, etc. Since linear or log scale 

interpolation is used to determine spectrum values corresponding to the natural periods of the 

structure, it is recommended that the data in the region of rapid changes be closely defined. And 

the range of the spectrum function must cover the range of the maximum and minimum periods 

calculated from the eigenvalue analysis. MIDAS uses the maximum or minimum value of the 

spectrum function if the periods of eigenvalue analysis exceed the range of the inputted range of 

the spectrum function. 
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8-1 Introduction 

 

Linear buckling analysis is used to determine critical load factors of a structure and the 

corresponding buckling mode shapes. For linear buckling analysis, the equilibrium equation for a 

structure considering its geometric stiffness due to stresses is as follows:    

G Ku K u p      (8.1) 

where, 

K  : Elastic stiffness matrix 

GK  : Geometric stiffness matrix due to stresses  

u  : Total displacement of the structure 

p  : Loads acting on the structure  

 

In linear analysis, stresses in a structure are proportional to loads, and the geometric stiffness 

matrix is proportional to the stresses. Therefore, if we assume that the load, p  is proportional to 

a reference load, p , the geometric stiffness, GK  can be expressed as,   

G GK K                             (8.2) 

p p                                (8.3) 

where, 

p    : Reference load 

GK  : Geometric stiffness matrix corresponding to the reference load 

   : Load factor 

 

Substituting the equations (8.2) and (8.3) into equation (8.3), we obtain,  

G  Ku K u p         (8.4) 

Chapter 8. Linear Buckling Analysis 
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The equilibrium state as in equation (8.4) can be either stable or unstable depending on the 

magnitude of the load factor, . In order to assess its stability, the perturbation,u  is added to 

u at an equilibrium state.   

( ) ( )G      K u u K u u p       (8.5) 

The non-perturbation terms in equation (8.5) are eliminated using the equilibrium equation (8.4), 

and then we obtain an eigenvalue problem as follows: 

( )G  K K u 0        (8.6) 

At this point, the stability of the equilibrium state can be assessed by the following matrix 

equation: 

0G K K     : Stable status 

0G K K     : Unstable status 

So the eigenvalue, , which satisfies equation (8.6), can be referred to as the critical load factor 

at which instability of the equilibrium begins. And the corresponding eigen mode,  (  u ) 

represents the buckling shape of the structure. The critical load causing buckling in the structure 

can be expressed asp considering the critical load factor and the reference load. Fig. 8-(1) 

shows a column subjected to a compression load in its equilibrium state and the buckling shape 

due to the critical load. 
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Figure 8-(1) Buckling of Column under Compression 

  

In linear buckling analysis, the geometric stiffness matrix,
GK needs to be set up and the 

eigenvalue problem of equation (8.6) must be solved.  MIDAS calculates the geometric stiffness 

making use of the linear stresses or internal forces in elements and calculates the eigenvalue 

problem by the Lanczos iteration method. 
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8-2 Geometric Stiffness 

 

The elements for which MIDAS considers geometric stiffness due to stresses are 

Truss, Beam, Plane Stress, Plate and Solid elements. 

 

It is cautioned that buckling analysis requires of existing of elements in the model for which a 

geometric stiffness can be considered. 

 

The general form of a geometric element stiffness matrix is as follows: 

e T

G dV K G SG           (8.7) 

where, S represents the stresses or internal element forces, and G represents the matrix defining 

the relationship of nodal displacements and displacement derivatives. 

 

8-2-1 Truss Element 

 

Only the translational displacements in the transverse (y and z) directions in the element 

coordinate system are considered when the geometric stiffness of a truss element is calculated.  

  
T

i i iv wu            (8.8) 

 
2

1

i i

i

v N v


 , 
2

1

i i

i

w N w


       (8.9) 

 where, 

 
iN  : 2-node linear shape function 
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For the formation of S , only the axial stress,
xx  is considered. 

 
0

0

xx

xx





 
  
 

S            (8.10) 

The relationship of nodal displacement and displacement derivative function,
iG is expressed as  

 

 

0

0

i

i

i

N

x

N

x

 
 

  
 

  

G          (8.11) 

 

The geometric stiffness of a truss element can be expressed using the matrix 
iG . 

e

T

Gij i j
L

A dL K G SG           (8.12) 

 where, 

 A  : Section area 

 
eL  : Element length 

 

By rearranging Eq. (8.12), the element stiffness matrix of a truss element can be calculated as 

follows: 

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

x
G

e

N

L

 
 


 
 
 

  

K        (8.13) 

where, 

xN  : Axial force 
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8-2-2 Beam Element 

 

Since the geometric stiffness of a beam element in linear buckling analysis only considers axial 

force, 
xN , the calculation process is similar to that for a truss element. In a beam element, the 

translational displacements in the transverse directions can be expressed as nodal d.o.f, which 

reflects rotations. 

  
T

i i i yi ziv w  u            (8.14) 

2

0 1

1

( )i i i zi

i

v H v H 


  , 
2

0 1

1

( )i i i yi

i

w H w H 


      (8.15) 

0iH and 
1iH  are Hermite cubic shape functions. 

2 3

01 1 3 2H     , 2 3

02 3 2H    , 2 3

11 ( 2 )eH L      , 

2 3

02 ( )eH L x x    

 where, 

   : 0 1   

 
eL  : Element length 

 

Thus, the relationship of nodal displacement and displacement derivative function, 
iG , is noted 

as, 

0 1

0 1

0 0

0 0

i i

i

i i

H H

x x

H H

x x

  
  

  
  

   

G        (8..16) 

 

Since the matrix, S is identical to that for a truss element, the geometric stiffness matrix of a beam 

element can be calculated as follows: 
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0 0 0
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0 0 0 0
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e

e

e

e

G x

e e

e e

e e

e e

L

symm
L

L

L

N

L L

L L

L L

L L

 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
 

 
 
 

  
 
 

    

K
        

(8..17) 

The calculation for the geometric stiffness of a beam element is performed while considering 

shear forces, bending moments and torsion moments. MIDAS uses various buckling types 

(lateral-torsional, axial-torsional) for the analysis of the geometric stiffness of beam elements. 

 

8-2-3 Plane Stress Element 

 

In the geometric stiffness calculation of a plane stress element, all the translational displacements 

in the x, y and z directions are considered in the element coordinate system. 

  
T

i i i iu v wu            (8.18) 

 
1

n

i i

i

u N u


 , 
1

n

i i

i

v N v


 , 
1

n

i i

i

w N w


      (8.19) 

 where, 

 n  : Number of nodes 
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iN  : Shape functions based on the number of nodes 

In-plane stresses are considered in the composition of S . 

 

 
 

  
 
 

S 0 0

S 0 S 0

0 0 S

,   
xx xy

xy yy

 

 

 
  
 

S         (8.20) 

The relationship of nodal displacement and displacement derivative function, 
iG , is noted as Eq. 

(8.21), 

 

0 0 0 0

0 0 0 0

0 0 0 0

T

i i

i i
i

i i

N N

x y

N N

x y

N N

x y

  
 
  

  
  

  
  
 

   

G        (8.21) 

Using the matrix,
iG , the geometric stiffness of a plane stress element can be expressed as, 

e

T

Gij i j
A

t dA K G SG           (8.22) 

 where, 

 t   : Thickness 

 
eA  : Element area 

 

 

8-2-4 Plate Element 

 

In the geometric stiffness calculation of a plate element, all the translational displacements in the 

x, y and z directions in the element coordinate system are expressed in nodal d.o.f, which reflect 

rotations. 

 

  
T

i i i i xi yiu v w  u           (8.23) 
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1

( )
n

i i i yi

i

u N u zN 


  , 
1

( )
n

i i i xi

i

v N v zN 


  , 
1

n

i i

i

w N w


    (8.24) 

  

where, 

 n  : Number of nodes 

 
iN  : Shape functions based on the number of nodes 

 

Since Eq. (8.24) does not consider curvature of an element, it can only be applied to a linear plate 

element. In the formation of S , all the stress components except for 
zz  are considered. 

 

 
 

  
 
 

S 0 0

S 0 S 0

0 0 S

,   

0

xx xy zx

xy yy yz

zx yz

  

  

 

 
 

  
 
 

S        (8.25) 

 

The relationship of nodal displacement and displacement derivative function, 
iG , is noted as Eq. 

(8.26), 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

i i

i i

i i

i

i i
i

i i
i

N N

x y

N N

x y

N N

x y

N N
z z N

x y

N N
z z N

x y

  
  
 
  
 

  
  

  
  

  
   

  
  
 

   

G (8.26) 

Using the matrix,
iG , the geometric stiffness of a plate element can be expressed as, 

e

T

Gij i j
V

dV K G SG           (8.27) 

 where, 

 
eV  : Element volume 
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In case of a higher order plate element, the curvature of the element is considered, and a 

coordinate system is defined for rotational d.o.f. at each node. Other than these, the geometric 

stiffness can be calculated in a similar process. 

  

 

8-2-5 Solid Element 

 

In the geometric stiffness calculation of a solid element, all the translational displacements in the 

x, y and z directions in the element coordinate system are considered. 

  
T

i i i iu v wu            (8.28) 

 
1

n

i i

i

u N u


 , 
1

n

i i

i

v N v


 , 
1

n

i i

i

w N w


      (8.29) 

 where, 

 n  : Number of nodes 

 
iN  : Shape functions based on the number of nodes 

 

In the formation of S , all the stress components are considered.  

 

 
 

  
 
 

S 0 0

S 0 S 0

0 0 S

,   

xx xy zx

xy yy yz

zx yz zz

  

  

  

 
 

  
 
 

S        (8.30) 

 

The relationship of nodal displacement and displacement derivative function, 
iG , is noted as Eq. 

(8.31), 
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

i i i

i i i
i

i i i

N N N

x y z

N N N

x y z

N N N

x y z

   
 
   

   
  

   
   
 

    

G   (8.31) 

 

Using the matrix,
iG , the geometric stiffness of a solid element can be expressed as, 

e

T

Gij i j
V

dV K G SG           (8.32) 

 where, 

 V  : Element volume 
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8-3 Critical Load Factor Calculation 

 

The eigenvlaue problem of equation (8.6) in linear buckling analysis can be simply expressed as. 

( )m G K K 0        (8.33) 

where, 

m  : Critical load factor 

m  : Buckling mode shape 

 

MIDAS uses the Lanczos iteration method for solving an eigenvalue problem such as equation 

(8.33). The Lanczos iteration method is explained in the Chapter Modal Analysis. Equation (8.33) 

is similar to an eigenvalue problem of free vibration analysis, but the geometric stiffness, GK is 

not positive definite unlike the mass matrix. Consequently, a shift invert technique must be 

applied in linear buckling analysis by substituting /(1 )m m m    . The calculated critical 

load factors are output in the order from the smallest absolute value upward. 
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8-4 Optional Parameters 

 

In linear buckling analysis the critical load factor may have either a positive or a negative sign 

depending on the direction of the reference load p . In case of a complex finite element model 

with complex loads, the sign of the critical load factor can change depending on the buckling 

mode. Therefore, MIDAS provides a function, which can calculate only the critical loads with a 

positive sign if necessary.  

 

Although specific loads such as self weight generally remain constant unlike the reference 

load, p , MIDAS provides a function that allows selection of load types so that they can be used 

as either a reference load or a constant load. The load, which has been selected as a constant load 

will remain constant irrespective of the load factor, , but generates only the geometric stiffness. 

The linear buckling analysis, which includes constant loads, becomes an eigenvalue problem in 

the following form: 

*( ) 0G m G  K K K          (8.34) 

where, 

*

GK  : Geometric stiffness for stresses induced by constant loads 

 

In a linear buckling analysis the Lanczos iterative process expects for plate elements that the 

drilling d.o.f. is activated. When this is not the case MIDAS will restrain the rotations in the local 

Z-direction. 

 

 



 

 

We Analyze and Design the Future 211 

Analysis and Algorithm Manual 
m

id
a

s 
F

E
A

 

9-1 Constraint Conditions  

 

In MIDAS, 3 translational degrees of freedom and 3 rotational degrees of freedom may be 

assigned to a single node, depending on the type of elements that are connected to the node. 

Constraint conditions are defined to a node when not all 6 degrees of freedom are addressed by 

the elements connected to the nodes, or when the user wants to define special constraints to 

restrain a node from any directional movements in the Global Coordinate System (GCS). 

 

Different element types activate the following nodal degrees of freedom: 

 Truss-element: Only 2D or 3D translations 

 Beam-elements: 2D or 3D translations and rotations 

 Plane stress, plane strain and axisymmetric: Only 2D displacements. 

 Plate elements: 3D translations and only out of plane rotations 

 Plate elements with drilling dof’s: 3D translations and rotations 

 Solids: Only 3D translations 

Degrees of freedom in a node that are not activated by elements connected to that node are 

automatically constrained, unless the Automatic Constraint option has been switched off in the 

Control Analysis dialogue. When a 2D Analysis or an axisymmetric model has been chosen in 

this dialogue box automatically the out-of-plane degrees of freedom will be constrained. When 

nodal constraints are assigned to a node, the corresponding reactions are produced at the node. 

The nodal reactions are produced in the GCS. 

 

User defined constraints can be defined with respect to the Global Coordinate System (GCS) or to 

the Nodal Local Coordinate System (NCS). 

 

Fig. 9-(1) illustrates a method of specifying constraints on the degrees of freedom of a plane 

frame model. Since this is a two dimensional beam-element model defined in the GCS X-Z plane, 

the displacement d.o.f. in the GCS Y-direction and the rotational d.o.f. about the GCS X and Z 

Chapter 9. Load and Boundary 



 

 

Chapter 9  |  Load and Boundary 

m
id

a
s 

F
E

A
 

212 We Analyze and Design the Future 

axes need to be restrained in all the nodes. 

 

 

Figure 9-(1) Plane frame model with constraints on d.o.f. 

 

For node N1, which is a fixed support, the Constraints dialogue is used to additionally restrain the 

translations in the GCS X and Z-directions and the rotations about the GCS Y-axis. For node N3, which is a 

roller support, the translation in the GCS Z direction is restrained. For node N5, which is a roller support in 

an NCS, the NCS is defined first at an angle to the GCS X-axis. Then the corresponding translation is 

restrained in the NCS.   

 

Fig. 9-(2) shows examples of constraining the not-connected degrees of freedom in nodes. In Fig. 9-(2) (a), 

the translation in the direction of the X-axis and all rotations in the connecting node are constrained 

because of truss elements have only axial translational degrees of freedom. Fig. 9-(2) (b) represents an I-

beam where the top and bottom flanges are modeled as beam elements and the web is modeled with plane 

stress elements with drilling degrees of freedom. 3D beam elements have 6 d.o.f’s at each node, and 

therefore, in those nodes where the plane stress elements are connected to the beam elements, no additional 

: Fixed support condition 

: Pinned support condition 

: Roller support condition 

angle of  

inclination 
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nodal constraints are required. At the same time the out-of-plane translation in the Y direction and all the 

rotational degrees of freedom are constrained in the nodes of the plane stress elements that are not 

connected to the beams. Plane stress elements with drilling degrees of freedom have only in-plane 

translational and out-of plane rotational degrees of freedom. If the structure does not have enough stiffness, 

users can assign small stiffness, which does not affect the whole structural analysis, to prevent instability in 

analysis. 

 

 

 

 

 

 

 

 

 

(a) Connection of truss elements 

 

 

 

 

 

 

 

 

 

 

(b) Modeling of an I-shaped cantilever beam, top/bottom flanges modeled as beam elements,  

and web modeled as plane stress elements 

Figure 9-(2) Examples of constraints on degrees of freedom 

 

Supports (all degrees of freedom are constrained) 
 

Bottom flange (beam element) 

In-plane vertical load 

Web (plane 
stress element) 

Top flange (beam element) 
● : nodes without constrains 
○ : DY, RX, RY and RZ are constrained 
DX : displacement in the GCS X direction 
DY : displacement in the GCS Y direction 
DZ  : displacement in the GCS Z direction 
RX : rotation about the GCS X-axis 
RY : rotation about the GCS Y-axis 
RZ : rotation about the GCS Z-axis 

connecting node 
(DX, RX, RY and RZ are constrained) 

supports (all degrees of  
freedom are constrained) 
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9-2 Skewed (Inclined) Support Condition   

 

Skewed support conditions are modeled using constraint conditions in the NCS (nodal coordinate 

system). When a NCS is defined in a node, the support conditions are interpreted with reference to 

the NCS, whereas the nodal reactions on the skewed supports are produced in the GCS (global 

coordinate system).   

 

 

 

z

z

x

x

z x

z x

z x

 

Figure 9-(3) Example of skewed support condition 
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9-3 Constraint Equation 

 

A constraint equation can be defined to subordinate the movement of a specific node to the 

movement of other nodes. In that case the specific subordinated node is called the constraint node, 

and the nodes that define the movement of the subordinated nodes are called independent nodes. 

The linear relationship between the constraint node and the independent nodes is defined as. 

, 1 , 2 , 1 , 2 ,... ...M m I i J j I i J jU aU a U b R b R       - Translational Constraint    (9.1) 

, 1 , 2 , 1 , 2 ,... ...M m I i J j I i J jR cU c U d R d R       - Rotational Constraint      (9.2) 

where, 

,M mU      : Linear displacement of constraint node, m in M-direction 

,I iU       : Linear displacement of independent node, i in I-direction 

,M mR      : Rotational displacement of constraint node, m about M-direction 

,I iR       : Rotational displacement of independent node, i about I-direction  

, , ,i i i ia b c d  : Coefficients defining correlation among degrees of freedom 

 

The constraint equations (9.1) and (9.2) allow to constrain any node and any degree of freedom. 

The constrain equations are defined to the degrees of freedom in GCS.   

 

Fig. 9-(4) shows an application example in which a connection is made between a 3-D structure 

consisting of solid elements and a thin plate consisting of plate elements. Since solid elements do 

not have any rotational degrees of freedom, they cannot restrain the rotational behavior of the 

connected plate. When the rotations of the plate elements are restrained such as defined by 

equation (9.3), the plate elements will be connected perpendicularly to the solid elements and 

bending of the plate will be transferred into bending of the solid elements. 
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,3 ,1 ,2

1 1
Y X XR U U

h h
         (9.3) 

 

 

Figure 9-(4) Example of constraint equation application 

 

 

It must be emphasized that the constraint equation which is explained in above is not a rigid link. 

A rigid link is a set of constraint relations that each equals the movement of one node to the 

movement of a single node. While in constraint equations the movement of a single node is 
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subordinated to the movements of a number of independent nodes.  

 

There are two methods for assigning constraint equations. By using the explicit method constraint 

equations are defined by directly entering all the degrees of freedom and coefficients of equations 

(9.1) or (9.2). Alternatively the weighted displacement method can be used, in which the 

movement of the constraint node is prescribed to be equal to the average displacement of 

independent nodes. Both of which are outlined below. 

 

Explicit 

- Select a constraint node and a degree of freedom (multi-selection is not allowed). 

- Select independent nodes and a degree of freedom (multi-selection is not allowed), and input 

coefficients ( ,i ia b  or ,i ic d ). 

Information for independent nodes can be input more than once, and the equations (9.1) or (9.2) are 

defined based on this information. 

 

Weighted displacement 

- Select a constraint node. 

- Select degrees of freedom (multi-selection is allowed) to be equal to the constraint node and 

independent nodes. 

- Define for each independent node a weight factor,
iw . 

Information on independent nodes can be input more than once, and the following constraint 

equations are defined by this information: 

 

                      or    

 

where, S is the sum of the weight factors ( i

i

w ). MIDAS does not allow to couple translational 

and rotational displacements. 

 

 

, ,
i

I m I i

i

w
R R

S
, ,

i
I m I i

i

w
U U

S

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9-4 Nodal Load 

 

The nodal load is the most basic load, which enables us to define 6 directional load values for 

each node. The direction of a nodal load can be defined in any particular coordinate system. 
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9-5 Element Pressure Load 

 

Element pressure load is input in a form of uniformly distributed loads on surfaces or edges. 

Element pressure loads can be applied to 2-D elements (plate, plane stress, plane strain and 

axisymmetric) and 3-D elements (solid). Internally MIDAS converts element pressure loads into 

equivalent nodal loads. The load directions can be defined in either ECS or GCS. Fig. 9-(5) shows 

examples of element pressure loads.   

 

P 1

P 1

P 1

P 2

Edge 2

Edge 3

Edge 4

Edge 1

P 2

P 2

P 2
P 1

N 1

N 2

N 3
N 4

 

(a) Pressure load applied to a plate element, plane stress element, plane strain element or axisymmetric element 

in normal direction to edges 
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(b) Pressure load acting on the surface of a plate element or plane stress element 

 

 (c) Pressure load acting on surfaces of a 3D element in the normal direction  

Figure 9-(5) Pressure loads acting on elements 
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9-6 Body Force 

 

In general the body force is used to define the self-weight or inertia force of a structure.  This 

load is applied to all the elements and is defined in GCS X, Y and Z-directions. The basic 

definition of the body force is given in equation (9.4), and the magnitudes of , ,  x y z  are 

calculated as the product of the density and the gravitational acceleration in each direction.  The 

shape function is identical to that used in the element stiffness calculation.  

 

e

x

i i y
V

z

N dV







 
 

  
 
 

F                                  (9.4) 

 

Where, 

Fi   :   Body Force 

ωx  :   Unit Weight in the X-direction 

ωy  :   Unit Weight in the Y-direction 

ωz  :   Unit Weight in the Z-direction 

Ni   :   Shape Function 
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9-7 Prescribed Displacement 

 

Prescribed displacement is used when the location of a particular node after deformation is known. 

Prescribed displacement is basically defined in the Global Coordinate System, but can be defined 

together with Nodal Coordinate System to express displacements in any directions. Prescribed 

displacement is classified as loading because it generates structural deformation, but is similar to a 

boundary condition as it generates reactions.  

 

Especially, a node with a specified displacement results in adaptations in the stiffness of the 

corresponding elements. Therefore, one should be careful when the structure is analyzed for a 

number of load cases in the same analysis-run. For example, a prescribed displacement in a node 

will remain in place for all the load cases which are applied to the structure when boundary 

conditions are not changed accordingly.  
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A structure is completed in a number of construction stages. The configurations of the structure, 

loadings, boundary conditions and even the physical properties of structural members change 

during the construction stages. Such changes in the structural system are induced from the 

installation and removal of temporary structural members required in the process of construction 

and staged erection of permanent structural members. In the case of concrete, the material 

properties change with time. If the structural system continues to change as the construction 

progresses, the true behavior of the finally erected structure may be different from that of the 

structure analyzed without reflecting the construction stages. Also the maximum member forces 

may take place during the construction rather than at the completion of the construction or at the 

service stage. 

 

If a structure undergoes various construction stages until its completion, the structure needs to be 

analyzed for time dependent effects. This is intended to include member forces induced from the 

process of construction in design in addition to the member forces resulting from the loads 

conventionally accounted for. The time dependent properties of concrete include creep, shrinkage, 

change in compressive strength, etc. The time effects should be taken into account for the 

construction of new structures as well as existing structures under retrofit and reinforcement. 

 

MIDAS considers the following changes in structural systems in construction stage analysis: 

 

Creation and removal of structural members 

Loading and unloading 

Change in boundary conditions 

 

MIDAS considers the following time-dependent properties of concrete for construction stage 

analysis: 
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Compressive strength gain with time in concrete members  

Creep deformation in concrete members 

Shrinkage deformation in concrete members 

 

The following steps outline the procedure used in MIDAS for carrying out time dependent 

analysis reflecting construction stages: 

 

1. Create a structural model. Assign elements, loads and boundary conditions to groups of the 3 

categories, which will be activated or deactivated at each construction stage. 

 

2. Define time dependent material properties such as creep and shrinkage. The time dependent 

material properties can be defined using the standards such as ACI or CEB-FIP. The user may also 

define them directly. 

 

3. Compose construction stages based on the true sequence of construction. 

Define construction stages using the previously defined element groups, boundary condition 

groups and loading groups. 

 

4. Carry out a structural analysis after specifying the desired analysis conditions. 
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In order to compose a construction stage model, a base model needs to be created first followed by 

assigning construction stages to the corresponding structural members associated with loads and 

boundary conditions.  

 

 

In order to activate (create) and deactivate (delete) structural members according to construction 

stages, the total structure needs to be classified into element groups, boundary condition groups 

and load groups separately. 

 

 

The user composes construction stages by activating and/or deactivating element groups, 

boundary condition groups and load groups for each stage. Sub-time steps can be added to each 

construction stage, and load groups can be added or deleted at each time step. Activation and 

deactivation of element groups and boundary condition groups causing changes in the structural 

system can take place only at the first step of a construction stage. If the structure is insensitive to 

time dependent properties, times need not be input for construction stages. However, if a number 

of load groups are sequentially applied in a construction stage, the corresponding time intervals 

need to be defined.  

 

Each construction stage is composed by defining activation and deactivation of element groups, 

boundary condition groups and load groups. The structure at a particular construction stage is 

composed of added and deleted element, boundary condition and load groups accumulated on the 

structure at the previous construction stage.  
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The following are the contents, which can be included in each construction stage: 

Activation (creation) and deactivation (deletion) of elements with certain ages (maturities) 

Activation and deactivation of loadings applied at specific times 

Changes in boundary conditions 

 

The concept of construction stages used in MIDAS is illustrated in Figure 10-(1). Construction stages 

can be readily defined by duration for each stage. A construction stage with ‘0’ duration is possible, 

and the first and last steps are basically created once a construction stage is defined. Activation and 

deactivation of elements, boundary conditions and loadings are accomplished within the time 

duration of each stage. 

 

 

 

Changing conditions such as new and deleted elements, change in boundary conditions and 

addition and removal of loadings basically take place at the first step of each construction stage. 

Accordingly, each construction stage is created to reflect specific changes in the structural system 

associated with specific timing in the construction schedule. That is, the number of construction 

stages increases with the increase in the number of interim structural conditions until its 
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completion. 

 

Structural system changes in elements and boundary conditions can be defined only at the first 

step of each construction stage. However, additional steps can be defined within a given 

construction stage for ease of analysis to reflect addition and removal of loadings. This allows us 

to specify delayed loadings representing, for instance, temporary construction loads while 

maintaining the same structural system without creating additional construction stages. 

 

If many additional steps are defined in a construction stage, the accuracy in analysis results will 

improve since the time dependent analysis closely reflects creep, shrinkage and compressive 

strengths. However, if too many steps are defined, the analysis time may be excessive, thereby 

compromising efficiency. On the contrary, if time dependent properties are not selected and the 

analysis is subsequently carried out, the analysis results do not change irrespective of the number 

of steps defined. 

 

Subsequent to activating certain elements with specific ages (maturities) in a construction stage, 

the ages continue to increase with the passage of subsequent construction stages. MIDAS 

automatically calculates the properties of concrete elements using the elements’ ages accumulated 

over the duration of the previous construction stages. 

 

When specific elements are activated in a construction stage, the corresponding ages must be 

assigned to the elements. Creating elements with ‘0’ age represents the instant when the fresh 

concrete is cast. However, a structural analysis model does not typically include temporary 

structures such as formwork/falsework, and as such unexpected analysis results may be produced 

if the analysis model includes immature concrete elements. Especially, if elements of ‘0’ age are 

activated, and an analysis is carried out reflecting the time dependent compressive strength gains, 

meaningless large displacements may result due to the fact that no concrete strength can be 

expected in the first 24 hours of casting. A correct method of modeling a structure in a 

construction stage will be that the wet concrete with the formwork is considered as loading, and 

that the activation of the concrete elements are assumed after a period of time upon removal of the 
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formwork/falsework. 

 

If new elements are activated in a particular construction stage, the total displacements or stresses 

accumulated up to the immediately preceding construction stage do not affect the new elements. 

That is, new elements are activated with ‘0’ internal stresses regardless of the loadings applied to 

the structure previously. 

 

If a loading is applied in a construction stage, the loading remains in effect in all the subsequent 

construction stages unless it is deliberately removed. Elements are similarly activated for a given 

construction stage. Only the elements pertaining to the relevant construction stage are activated as 

opposed to activating all the necessary elements for the stage. Once-activated elements cannot be 

activated again, and only those elements can be deactivated. 
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MIDAS can reflect time dependent concrete properties such as creep, shrinkage and compressive 

strength gains. 

 

Creep and shrinkage simultaneously occur in real structures as presented in Figure 10-(2). 

Accordingly, elastic shortening, creep and shrinkage can not be physically separated. However, 

for the purpose of practical analysis and design, they are separately considered. 

 

The true elastic strain in the figure 10-(1) represents the reduction in elastic strain as a result of 

concrete strength gains (increase in modulus of elasticity) relative to time. In general cases, the 

apparent elastic strain is considered as elastic strain. MIDAS, however, reflects the true elastic 

strain in analysis since it can consider the time-variant concrete strength gains. 

 

Creep strain in a member is proportional to elastic strain at the time of loading. And high strength 

concrete yields less creep strain relative to lower strength concrete under the same stress. The 

magnitude of creep strain can be 1.5~3.0 times that of elastic strain. About 50% of the total creep 

strain takes place within the first few months followed by a slower development of creep strain 

for some time, and the majority of creep strain will have occurred in about 5 years. 
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Most materials retain the property of creep. However, it is more pronounced in the concrete 

materials, and it contributes to the increase in deformation relative to time, which can not be 

ignored in design. In normal concrete structures, sustained dead loads and external forces cause 

creep. Additional creep occurs in pre-stressed/post-tensioned concrete structures due to the pre-

stress effects. 

 

The sum of elastic strain and creep strain in concrete under the state of uni-axial stress can be 

expressed as, 

( ) ( ) ( , ) ( , )         i ct t J t      (10.1) 

where, 

 

 
( , )J t  : Total strain under the unit stress, defined as creep function 

  : Time at which the specified stress starts acting, loading time 

t  : Time at which the resulting strain is calculated 
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As shown in Figure 10-(3), the creep function ( , )J t  can be presented by the sum of the initial 

elastic strain and creep strain as follows: 

1
( , ) )

( )
( , 


 J t

E
C t     (10.2) 

where, 

 

 

 

 

The creep function ( , )J t  can be also expressed in terms of a ratio relative to the elastic 

deformation. 

1 ( , )
( , )

( )

 







t
J t

E
       (10.3) 

where, 

 

 

 

From the above two equations, the relationship between the specific creep and the creep 

coefficient can be also expressed as follows: 

( )E  : Modulus of elasticity at the time of loading 

( , )C t  : Resulting creep deformation at the age t, which is referred to as specific creep 

( , ) t  : Creep coefficient, which represents the ratio of the creep to the elastic deformation 
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( , ) ( ) ( , )    t E C t     (10.4) 

( , )
( , )

( )

 


 

t
C t

E
     (10.5) 

MIDAS allows us to specify creep coefficients or shrinkage strains calculated by the equations 

presented in CEB-FIP, ACI, etc., or we may also directly specify the values obtained from 

experiments.  

 

The user-defined property data can be entered in the form of creep coefficient, creep function or 

specific creep (see Figure 10-(4)). 

 

 

 

The concrete creep function varies with the time of loading as shown in Fig. 10-(5). The later the 

load application time, the smaller is the immediate elastic strain due to the concrete strength gain 

with time. As for the deformation at a time after the time of loading, it will become smaller if the 
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loading time is later.  

 

The reasons why the elastic and creep strains decrease as the loading time is delayed are the 

development of compressive strength and the hydration of concrete. When the user defines the 

creep functions, the property of concrete strength gain must be well reflected. The range of the 

loading times for creep functions must include the element ages (loading times), which exist in a 

time dependent analysis. The accuracy of analysis results improves with an increase in the number 

of creep functions for different loading times. 
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The creep function, which is used to calculate creep is a function of the time of a specific stress 

applied ( ) and the current time ( t ). That is, various creep functions as shown in Fig. 10-(5) can 

be used depending on the time of the specific stress applied. If the stress changes with time, the 

increased/decreased stress at each time requires an independent creep function. Creep strain at a 

particular time is calculated through superposition of individually calculated strains due to the 

stresses increased/decreased from the time that stress starts changing. In order to use the 

superposition method, the histories of all the element stresses are saved, and the creep strains are 

calculated from the initial steps to the present for all the stresses at every step. Extensive data 

storage and calculations are thus required to use the superposition method. However, MIDAS 

does not save the entire histories of stresses, rather MIDAS uses the following integration method 

to increase the calculation efficiency. 

 

The following outlines the method of calculating creep strain at the time t  due to the stresses at 

the time  j  using creep coefficients: 

( , ) ( , ) ( )     c j j jt t : Creep strain    (10.6) 

( ) ( , )  cr c j
A

P E t t dA : Loading due to creep strain    (10.7) 

where, 

 

 

 

 

The following outlines the method in which specific functions of creep are numerically expressed, 

and stresses are integrated over time. The total creep from a particular time τ to a final time t can 

be expressed as an (superposition) integration of creeps due to the stresses resulting from each 

stage. 

( )  j  : Strain due to stress at time  j  

( , )  jt  : Creep coefficient for the time from  j to t  

( , ) c jt  : Creep strain at time t  due to elastic strain at time  j  
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0

( )
( ) ( , )

 
  









t

c
t C t d     (10.8) 

where,  

( )
c

t  : Creep strain at time t   

( , )C t  : Specific creep 

  : Time at which the load is applied 

 

If we assume from the above expression that the stress at each stage is constant, the total creep 

strain can be expressed as a sum of the strains at each stage. 

 

  
1

,

1

( ),  




 
n

c n j

j

n jC t     (10.9) 

Using the above expression, the incremental creep strain ,c n  between the times nt  and 

1nt  can be expressed as follows: 

         
 



 

    
n 1 n 2

c ,n c ,n c ,n 1 j j j j

j 1 j 1

n n 1C( t ) C( t ), ,  (10.10) 

If the specific creep is expressed by the degenerate kernel (Dirichlet functional summation), the 

incremental creep strain can be calculated without having to save the entire stress history. 

 
( ) /

1

( , ) ( ) 1


 
  



    i

m
t

i

i

C t a e    (10.11) 

where, 

( )
i

a  : Coefficients related to the initial shapes of specific creep curves at the 

time  of loading 

i
  : Values related to the shapes of specific creep curves over a period of 

time 
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The coefficients ( )
i

a related to the initial shapes of the specific creep curves are expressed as 

follows: 

 

1. Define m , and 
i

  which will be used for calculation. Define the time of loading j . The 

time of loading needs to be distributed evenly over the total time for analysis. 

 

2. Select the time it  at which creep strain needs to be calculated. Because the creep strain 

calculation is based on the time of loading, the time at which creep needs to be calculated it  

must be always greater than the loading time j . 

 

3. Calculate the creep compliance values, ( , )i jC t . The user may use the creep compliance 

values, which may have been measured or calculated using national standards. The number of 

the creep compliance values should be evenly distributed over the total analysis time, and 

sufficient data needs to be secured. 

 

4.  By using the values obtained from the above steps, the following expression can be 

constructed: 

 

     

     

     

 

 



     

     

     



     
   
     

  
  
       

1 j 1 1 j 2 1 j m

2 j 1 2 j 2 2 j m

n j 1 n j 2 n j m

( t ) / ( t ) / ( t ) /

1 j 1 j

( t ) / ( t ) / ( t ) /
2 j 2 j

( t ) / ( t ) / ( t ) /
m j

1 e 1 e 1 e a ( ) C( t , )

a ( ) C( t , )1 e 1 e 1 e

a ( ) C(1 e 1 e 1 e




    

 

 
 
 
 
 
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 n jt , )

             
,1 0

1 1

( )

( )

 

  

 

 A

i i j

n m m n

A a

a C n m
   (10.12) 

 

5.  The Least Square Method is used to obtain the solution to Eq. 10.12. 
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   
1





A A A

A A A

a C

a C

T T

T T
 

In order to optimize the values of m  and 
i
, the following conditions need to be satisfied. 

 

- Minimize errors in the Least Square Method. 

- The ultimate creep strain calculated using ( ) i ja  need to be very close to the 

predicted.  

- Participation from each value of
( ) /

1( )



  

 
 

ijt

i j ea  needs to be close to one another. 

Having gone through the steps 3~5 using different loading times  j , the corresponding values of 

( )i ja  are obtained and subsequently saved. If a specified loading time does not coincide with 

any of the specific creep curves, the loading times  j  and the corresponding ( )i ja  are 

interpolated. 

 

Using the above specific creep equation, the incremental strain can be rearranged as follows: 

   
    


   

 

 

  
 

    
 

  i ij j

m n 2
( t ) / ( t ) /

c ,n j i j n 1 i n 1

i 1 j 1

a ( )e a ( ) 1 e (10.13) 

 


 



  
  ij

m
( t ) /

c ,n i ,n

i 1

A 1 e  

2
( ) /

, 1

1

1( ) ( )


   


  





    ij

n
t

i n j i n i

j

j nA a e a  

 

From the equation for
,i n

A , 
, 1i n

A  can be expressed as, 

3
( ) /

, 1 2

1

2( ) ( ).ij

n
t

i n j i n i

j

j nA a e a


   


  

 



     

Therefore, the relationship between 
,i n

A  and 
, 1i n

A  is given by, 
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1( ) /

, , 1 1 1
( )


   

  
  n it

i n i n n i n
A A e a  

,1 0 0( )  
i i

A a  

Using the above method, the incremental strain for each element at each stage can be obtained 

from the stress resulted from the immediately preceding stage and the modified stress 

1





n
accumulated up to the immediately preceding stage. This method thus eliminates the need 

for saving the stress histories of the members and calculating the strains from the initial stage at 

every stage. This method provides rather accurate analysis reflecting change in stresses. Once the 

user enters the required material properties, the user need not separately calculate the creep 

coefficients since the program automatically calculates them. The fact that the equations from the 

standard specifications are used, this method retains some drawbacks. The user can not directly 

enter own values based on experience, and the user can not assign specific creep values to specific 

elements. This method is greatly affected by the time interval of analysis. The time intervals for 

construction stages in general cases are relatively short and hence do not present problems. 

However, if a long time interval is specified for a stage, it is necessary to divide the interval into 

sub-time intervals to closely reflect the creep effects. 

 

Time intervals based on the characteristics of creep should be divided into a log scale. Once the 

user specifies the number of intervals, MIDAS automatically divides the time intervals into a log 

scale. There is no fast rule for an appropriate number of time intervals. But more divisions result 

in approaching the exact solution. In case of a long construction stage interval, it may be 

necessary to divide the stage into a number of time steps. 
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Shrinkage is a phenomenon in which the volume of concrete contracts over time. MIDAS reflects 

shrinkage property curves presented in various standards and specifications in analysis. 

 

Shrinkage is a function of time, which is independent from stresses in concrete members. Shrinkage 

strain from a time 
0t  to a time t  can be expressed as, 

0 0( , ) ( , )  s t t f t t       (10.14) 

where, 

  :  Shrinkage coefficient at the final time 

0( , )f t t  :  A function of time 

t  :  Time of observation  

0t  :  Initial time of shrinkage 

 

MIDAS allows us to use the characteristic curves of shrinkage presented in various Standards 

such as CEB-FIP Model Code and ACI 209 and user defined curves based on experimental data. 

 

Shrinkage strain at a corresponding construction stage is calculated using the characteristic curves 

of shrinkage. 

 

2 1 2 0 1 0( , ) ( , ) ( , )   sh sh sht t t t t t  

 

2 1( , )sh t t  : Shrinkage strain from the construction stage 
1t  to 

2t  

1 0( , )sh t t  : Shrinkage strain from the initial time of shrinkage 
0t  to 

1t  

2 0( , )sh t t  : Shrinkage strain from the initial time of shrinkage 
0t  to 

2t  
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Shrinkage strains are non-mechanical strains such as thermal strains and creep strains. So the 

strains associated with calculation of concrete member forces are obtained by subtracting the 

shrinkage strains from the strains due to displacement. 

( )   shF EA  

If a structural member is not constrained in the axial direction, the effect of shrinkage on the 

member causes only displacement without generating member forces. Also, member forces 

caused by shrinkage may induce creep strains without the presence of external loadings. 

Shrinkage strains are thus affected by boundary conditions and time. 
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Concrete compressive strength and the modulus of elasticity change with time. In practice, 

considering the aging effects (maturity) is essential to ensure that the intended structure attains the 

planned geometry and strength.  

 

MIDAS reflects the changes in concrete compressive strength gain relative to the ages of concrete 

members in analysis. The compressive strength gain functions can be defined from the standard 

specifications such as ACI 209 and CEB-FIP as shown in Figure 10-(6), or it could be a user-

defined function. MIDAS thus refers to the concrete compressive strength gain curves, and it 

automatically calculates the strengths corresponding to the times defined in the construction 

stages, which are used in analysis. 
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MIDAS uses the following standards: 

 

1. Korean Bridge Standards (2005) 

 

Equations for creep calculation 

  

' '

c c ci

'
' '

c c '

cici

' '

0 c

'

0 RH cu

RH 3

cu

cu

'

' 0.2

0.3
'

'

c '

H

18

H

f ( t ) / E ( t ,t )

1 ( t ,t )
( t ,t ) f ( t )

EE ( t )

( t ,t ) ( t t )

( f ) ( t )

1 0.01RH
1

0.10 h

16.8
( f )

f

1
( t )

0.1 ( t )

( t t )
( t t )

( t t )

1.5 1 0.012RH





 




  

   












 

 
  

 

 




 






 
   

  

 

c

h 250 1500

2A
h

u

 


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Equations for shrinkage calculation 

    sh s sho s s( t,t ) ( t t )  

  sho s cu RH( f )  

    
     

  

6cu
s cu sc

f
( f ) 160 10 9 10

10
 



   
      

     




3

RH

RH
1.55 1 (40% RH 99%)

100

0.25 ( RH 99%)

  




 
 

s
s s 2

s

( t t )
( t t )

0.035h ( t t )
 

cc  : Creep strain in concrete 

( ) 
c t  : Sustained stress at loading time ( )t  

ciE  : Initial tangential modulus of elasticity of concrete at 28-days 

( , ) t t  : Creep coefficient of concrete 

o  : Notional creep coefficient 

cuf  : Mean 28-day compressive strength ( MPa ) 

RH  : Relative humidity (%) 

h  : Notional size of a member ( mm ) 

cA  : Cross sectional area of a member (
2mm ) 

u  : Perimeter of cross section exposed to atmosphere ( mm ) 

t  : Age at the time of loading sustained load (day) 

t  : Time of measurement (day ) 
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( , )cs st t  : Creep strain from the time of initial creep ( st ) to a particular time ( t ) 

cso  : Notional creep strain 

( ) s st t  : Function for manifestation of shrinkage  

sc  : Coefficient for cement type 

 4 sc  for a Type II cement 

 5 sc  for a Type I & V cement 

 6 sc  for a Type III cement 
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2. ACI209  

 

Equations for creep calculation 

 



 





   




 



' '

c c

' '

'

ci

' 0.6
'

u' 0.6

u cu h t s f a

( t ,t ) ( t )

1
J( t ,t ) 1 ( t ,t )

E ( t )

( t t )
( t ,t )

10 ( t t )

2.35C C C C C C

 

1)   Curing conditions ( cuC ) 






 


' 0.118

cu ' 0.094

1.25( t ) (moist cured)
C

1.13( t ) (steam cured)
 

2) Relative humidity ( hC ) 

 
 


h

1.27 0.0067H (H 40 )
C

1.0 (H 40 )
 

3) Volume-surface ratio ( tC ) 

   
0.0213 v / s

t

2
C 1 1.13e

3
  (mm) 

4) Slump ( sC ) 

 SC 0.82 0.00264 S  (mm) 

5) Fine aggregate percentage ( fC ) 

 fC 0.88 0.0024  

6) Air content ( aC ) 

  aC 0.46 0.09A 1.0  
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Equations for shrinkage calculation 







 


  

 


  

  



0
sh,u

0

sh 0

0
sh,u

0

6

sh,u sh

sh cp h t s f a c

( t t )
( moist cured )

35 ( t t )
( t ,t )

( t t )
( steam cured )

55 ( t t )

780 10 C

C C C C C C C C

 

1) Correction factors for the age of curing ( cpC ) 

 

 

2) Relative humidity ( hC ) 

  
 

  
h

1.40 0.010H (40 H 80 )
C

3.00 0.030H (80 H 100 )
 

3) Volume-surface ratio ( tC )  

 0.00472 v / s

tC 1.2e   (mm) 

4) Slump ( sC ) 

't  : Concrete age at the time of loading 

H  : Relative humidity (%) 

/v s  : Volume-surface ratio 

S  : Slump value 

  : Ratio of fine aggregate to the total aggregate by weight (%) 

A  : Air content (%) 

Age of moist curing (day) 1 3 7 14 28 90 

Correction factor ( cpC ) 1.2 1.1 1.0 0.93 0.86 0.75 
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 SC 0.89 0.00161S  (mm) 

5) Fine aggregate percentage ( fC ) 

 

 

 
 

 
f

0.30 0.014 ( 50 )
C

0.90 0.002 ( 50 )
  

6) Air content ( aC )  

 aC 0.95 0.008A   

7) Cement content of concrete ( cC )  

 cC 0.75 0.00061C  (kg/m3) 
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 sh 0( t ,t )  : Shrinkage strain from the time of initial shrinkage ( ot ) to a particular time ( t ) 

 sh,u  : Final shrinkage strain 

ot  : Initial time at which shrinkage starts (day) 

H  : Relative humidity (%) 

/v s  : Volume-surface ratio 

S  : Slump value 

  : Ratio of fine aggregate to the total aggregate by weight (%) 

A  : Air content (%) 

C  : Cement content of concrete ( kg/m3 ) 
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3. CEB-FIP Model Code 90  

 

Equations for creep calculation 

 

cc 0 c 0 ci 0

0 0 c 0

0 RH cm 0

0 RH cm 0

o
RH 1 / 3

0

cm 0.5

cm cmo

0 0.2

o 1

c

0.3

o 1
c o

H o 1

H

( t ,t ) ( t ) / E ( t ,t )

( t ,t ) ( t t )

( f ) ( t )

( f ) ( t )

1 RH / RH
1

0.46( h / h )

5.3
( f )

( f / f )

1
( t )

0.1 ( t / t )

2A
h

u

( t t ) / t
( t t )

( t t ) / t

1

  

  

   

   












 

 






 








 
   

  



18

o o

RH h
50 1 1.2 250 1500

RH h

   
    
   
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Equations for shrinkage calculation 

 

cs s cso s s

cso s cm RH

6

s cm sc cm cmo

RH sRH

RH

3

sRH

o

0.5

s 1
s s 2

o s 1

( t ,t ) ( t t )

( f )

( f ) 160 10 ( 9 f / f ) 10

1.55 ( 40% RH 99%)

0.25 ( RH 99%)

RH
1

RH

( t t ) / t
( t t )

350( h / h ) ( t t ) / t

  

  

 

 









  



   

   

  

 
   

 

 
   

  

 

 

cc  : Creep strain in concrete 

( ) c ot  : Sustained stress at loading time ( )ot   

ciE  : Modulus of elasticity of concrete at 28-days 

( , ) ot t  : Creep coefficient for concrete 

o  : Notional creep coefficient  

cmf  : Mean 28-day compressive strength ( MPa ) 

 cmof = 10 MPa  

RH  : Relative humidity 100%oRH  

h  : Notional size of a member  oh  =100 mm  

cA  : Cross sectional area of a member (
2mm ) 

u  : Perimeter length exposed to atmosphere ( mm ) 

ot  : Effective age at the time of loading (day) 

t  : Time of measurement (day ) 1t = 1 day 
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4. JSCE (Japanese concrete standard specifications - 2002)  

 

Equations for creep calculation 

 



 



  





 



 





  
 

 

 

  

' 0.6

' '

cc cp ct

' ' 0.09( t t ) '

cc 0 cr

' ' '

cr bc dc

' 2.0 2.4 ' 0.67

bc e

2.2' 1.4 4.2 0.36 0.30

dc e 0

/ E

( t ,t ,t ) 1 e

15(C W ) (W / C ) (log t )

4500(C W ) (W / C ) log (V / S / 10 ) (1 RH / 100 ) t

 

( , )cs st t  : Shrinkage strain from the time of initial shrinkage ( st ) to a 

particular time ( t ) 

cso  : Notional shrinkage strain 

( ) s st t  : Function for manifestation of shrinkage  

sc  : Coefficient for cement type 

 4 sc   Slowly hardening cements  

 5 sc   Normal or Rapid hardening cements  

 8 sc   Rapid hardening high strength cements  
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'
cc  : Compressive creep strain of concrete  

  : Creep coefficient 

' cp  : Compressive strength 

ctE  : Modulus of elasticity at the time of loading 

'
cr  : Final value of creep strain under a unit stress  (

10 210 /( / ) N mm ) 

'
bc  : Final value of basic creep strain under a unit stress 

 (
10 210 /( / ) N mm ) 

'
 dc  : The final value of drying creep strain under a unit stress  

 (
10 210 /( / ) N mm ) 

C  : Cement content of concrete ( kg/m3 ) (
3 3260 / 500 / kg m C kg m ) 

W  : Unit weight (
3/kg m ) (

3 3130 / 230 / kg m C kg m ) 

/W C  : Water-cement ratio ( 40% 65% C ) 

 

RH  : Relative humidity ( 45% 80% C ) 

 

V  : Volume (
3mm ) 

 

S  : Area exposed to atmosphere (
2mm ) 

/V S  : Volume-surface ratio ( mm ) (100 / 300 mm V S mm ) 

0t  : Time at which shrinkage starts (day) 

't  : Effective age at loading (day) 

t  : Time of measurement (day)  
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Equations for shrinkage calculation 

 

 



 
   
 

       

0.56
00.108( t t )' '

cs 0 sh

2' ( RH / 100 )

sh e e

( t ,t ) 1 e

50 78 1 e 38log W 5 log (V / S / 10 )

 

 

 

 

'

0( , ) sh t t  : Shrinkage strain from concrete age 0t  to t  ( 
510 ) 

'
 sh  : Final shrinkage strain ( 

510 ) 
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5. Japan bridge specification (Hisei Year 14) 

 

Equations for creep calculation 

 

     





      

 

cc c ct

0 d0 d 0 f 0 f f 0

c
th

/ E

( t ,t ) ( t t ) ( t ) ( t )

A
h

u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

cc  : Creep strain in concrete 

 c  : Stress due to sustained load (
2/N mm ) 

cE  : Modulus of elasticity of concrete (
2/N mm ) 

  : Creep coefficient for concrete 

0d  : Creep coefficient for delayed elastic strain due to sustained load 

0( ) d t t  : Function for manifestation of 0d  with time (see Figure 10-(7)) 

0 f  : Creep coefficient for permanent creep strain 

( ) f t  : Function for manifestation of 0 f  with time (see Figure 10-(8)) 

RH  : Relative humidity ( 45% 80% C ) 

  : Environmental coefficient corresponding to relative humidity (see 

Table 10.1) 

cA  : Surface area of a member (
2mm ) 

u  : Perimeter length exposed to atmosphere ( mm ) 

thh  : Fictitious member thickness ( mm ) 

0t  : Effective age at loading (day) 

t  : Time of measurement  (day) 
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
d

0

0.20

1 2 4 6810 100 1,000 10,000

0.40

0.60

0.80

1.00

 

 0d 0( ) d t t  

 


f

0

0.20

1 4 6810 100 1,000 10,000

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80 1.85

10
0

20
0

40
0

80
0

h

50
m
m

th

1.70

1.55
1.40

1.25

1.12

=

h
16
00
m
m

th =

 

0 f ( ) f t

 

Environment condition 0 f    

Submerged 0.8 60 

Relative humidity 90% 1.3 10 

Relative humidity 70% 2.0 3 

Relative humidity 40% 3.0 2 

0 f 
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Equations for shrinkage calculation 

    cs 0 s0 s 0( t ,t ) ( t t )  

 

 

  

 :  

 

Environmental condition  so  

Submerged - 1010-5 

Relative humidity 90% + 1010-5 

Relative humidity 70% + 2510-5 

Relative humidity 40% + 5010-5 

  so   


s

0
1 10 100 1,000 10,000

0.4

0.8

1.2

1.6

2
1.9

10
0

200

40
0

80
0

h

50
m
m

th
1.5

1.05

0.8
0.75
0.7

=

h
16
00
m
m

th=

 

 s  

0( , )cs t t  : Shrinkage strain from concrete age 0t  to t  

 so  : Final strain of basic shrinkage in concrete 

( )s t  : Function for manifestation of shrinkage 
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Thermal stresses due to heat of hydration in a mass concrete structure may cause detrimental 

cracking, thereby reducing its durability as well as impeding structural safety. In order to avoid 

such problems in casting mass concrete, heat of hydration is analyzed to control cracking through 

calculation of temperature and stress distribution. Mass concrete structures requiring heat of 

hydration analysis depend on their dimensions, structural types, cement types and construction 

conditions. In practice, heat of hydration analyses are normally carried out for slabs or mats in 

excess of 800~1000 mm in thickness and walls confined at bottom in excess of about 500 mm in 

thickness. 

 

Surface cracking may develop initially due to the temperature difference between the surface and 

the center. Through-cracks can also develop as a result of contraction restrained by external 

boundary conditions in the cooling process of high heat of hydration. Heat of hydration analysis is 

largely classified into thermal transfer and thermal stress analyses. Thermal transfer analysis 

entails conduction, convection, heat source, etc., and thermal stress analysis entails changes in the 

modulus of elasticity, creep and shrinkage, which are influenced by temperature, curing 

conditions, maturities, etc. 
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MIDAS calculates changes in nodal temperatures with time due to conduction, convection and 

heat source in the process of cement hydration. The following outlines the pertinent items 

considered in MIDAS and some of the main concepts in heat transfer analysis. 

 

Conduction 

 

In the case of fluids, molecular movements or direct collisions; and in the case of solids, 

movements of electrons cause the heat transfer through energy exchange from a high temperature 

zone to a low temperature zone. The rate of heat transfer through conduction is proportional to the 

area perpendicular to heat flux multiplied by the temperature gradient in that direction (Fourier’s 

law). 


  


x x

T
Q q A kA

x
                         (11.1) 

where, 

xQ  : Rate of heat transfer in X-direction 

xq  : Heat flux 

A  : Area 

k  : Thermal conductivity 





T

x
 : Temperature gradient 

 

In general, the thermal conductivity of saturated concrete ranges between 1.21~3.11, and its unit 

is 2/( )  okcal m h C . The thermal conductivity of concrete tends to decrease with increases in 

temperature, but the effect is rather insignificant in the ambient temperature range. 
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Convection 

 

When a fluid flows on a solid or in a pipe with different temperatures between the solid and the 

fluid, heat is transmitted between the fluid and the surface of the solid through the fluid’s relative 

molecular motion. This heat transfer is called convection. 

 

Heat transfer by forced convection occurs if a fluid is forced to flow on a surface such that an 

artificial fluid flow is formed. If the fluid flow is naturally created by a buoyancy effect due to a 

difference in density resulting from a difference in temperature within the fluid, such heat transfer 

is referred to as a free convection. Since the fluid flow affects the temperature field in this type of 

heat transfer, it is not a simple task to determine the temperature distribution and convection heat 

transfer in practice. 

 

The convection coefficient 
c

h  is defined to simply calculate the heat transfer between a solid 

and a fluid. T  and T


represent the surface temperature of the solid and the average 

temperature of the fluid flowing on the solid surface respectively. 

( ) cq h T T   : Heat flux on a solid   (11.2) 

The convection coefficient ( ch ) widely varies with many factors such as flow type, the 

geometric configuration of the object, the area in contact with the flow, physical properties of the 

fluid, average temperature on the surface subjected to convection, location, etc. Therefore, it is 

very difficult to formulate the coefficient. In general, convection problems associated with 

temperature analyses of mass concrete structures relate to the type of heat transfer taking place 

between the concrete surface and the atmosphere. Accordingly, the following empirical formula is 

often used, which is a function of the atmospheric wind speed. 

25.2( /( )) 3.2 ( / )o

c n fh h h kcal m h C V m sec              (11.3) 

The unit for convection coefficient is 2/( )  okcal m h C . 
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Heat Source 

 

Heat source is intended to model the amount of heat generated by the hydration process in mass 

concrete. The internal heat generation from the hydration heat source for a unit time and a unit 

volume is obtained by differentiating the equation for adiabatic temperature rise and multiplying 

the specific heat and the density of concrete. Adiabatic conditions are said to occur without loss or 

gain of heat or change in entropy; i.e., as isothermal. 

 

Internal heat generation per unit time and volume ( 3/( )kcal m h ) is expressed by, 

/ 241
,

24

tg cK e                                       (11.4) 

while the adiabatic temperature rise ( C ) is given by,  

(1 )tT K e                                 (11.5) 

where, 

T  : Adiabatic temperature ( C ) 

K  : Maximum adiabatic temperature rise ( C ) 

  : Response speed 

t  : Time (days) 
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Pipe cooling 

 

Pipe cooling is accomplished by embedding pipes into a concrete structure. These pipes are used 

to reduce the temperature rise from heat of hydration by passing a lower temperature fluid through 

the pipes. The heat transfer process takes place between the fluid and the pipe surfaces, and the 

temperature of the fluid increases as it passes through the pipes. The heat transfer by convection 

between the fluid and pipe surfaces is expressed as follows: 

 

, , , ,
( )

2 2

s i s o m i m o

conv p s s m P s

T T T T
q h A T T h A

  
    

 
    (11.6) 

where, 

ph  : Convection coefficient of fluid in pipes (
2/   kcal m h C ) 

sA  : Surface area of a pipe (
2m ) 

sT , 
mT  : Pipe surface and coolant temperatures ( C ) 

, ,,s i s oT T  : Pipe inlet and outlet temperatures ( C ) 

, , ,m i m oT T  : Coolant temperatures at pipe inlet and outlet ( C ) 

 

 

Initial temperature 

 

Initial temperature is an average temperature of water, cement and aggregates at the time of concrete 

casting, which becomes the initial condition for analysis. MIDAS allows the user to define different 

initial temperatures for different construction stages. 

 

Ambient temperature 

 

Ambient temperature represents the curing temperature, which may be defined as a constant value, 

sine function or time-dependent function. 
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Prescribed temperature 

 

A prescribed temperature represents a boundary condition for a heat transfer analysis and always 

remains a constant temperature. The nodes that are not specified with the convection conditions or 

constant temperatures are analyzed under the adiabatic condition without any heat transfer. In a 

symmetrical model, the plane of symmetry is considered an adiabatic boundary condition.  

 

Solution to heat equilibrium equations 

 

The basic equilibrium equation expressed in Eq. 11.7 is used to analyze heat transfer. Analysis 

results are expressed in terms of nodal temperatures varying with time. 

Q h qCT + (K + H)T = F + F + F = R                     (11.7) 

i j

V

C cN N dxdydz
 

  
  
  : Capacitance (mass) 

    
  

     

  
   
  


j j ji i i

xx yy zz

V

N N NN N N
K k k k dxdydz

x x y y z z
 : Conduction 

 
  
  
 c i j h

S

H h N N dS  : Convection 

Q i

V

F N Qdxdydz 
 

: Heat load due to heat 

source/sink 

 h c e i h

S

F h T N dS  : Heat load due to convection 

 q i q

S

F qN dS  : Heat load due to heat flux 
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where, 

  : Density 

c  : Specific heat 

xxk yyk
zzk  : Heat conductivity 

ch  : Convection coefficient 

Q  : Rate of heat flow 

eT  : Ambient temperature 

q  : Heat flux 

T  : Nodal temperature 

T  : Differential of nodal temperature with respect to time 

R  : Thermal loads 

 

If the temperature Ti
 at the time

it  and the temperature
1Ti

 at the time 
1it  are assumed to have the 

relationship given by Eq. (11.8), 

i+1 i

1

T - T
T T ,i+1 i

i

(1- )
t

 
 

                            (11.8) 

and we rearrange the equilibrium equation; we then obtain Eq. (11.9), Eq. (11.10) and Eq. (11.11). 

1 1 1

CT + (K + H)T = R

CT + (K + H)T = R  





i i i

i i i

                            (11.9) 

 

Taking the weighted average of the equilibrium Eq. (11.9) at the times 
it  and 

1it , Eq. (11.10) is 

obtained. 

 

   1 1

1

C T (1 )T + (K + H) T (1 )T

= R (1 )R .

i i i i

i i

   

 

 



   

 

 
  (11.10) 

 

By introducing Eq. (11.8) into Eq. (11.10), the equilibrium equation Eq. (11.11) can be expressed 
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as a function of temperature. Nodal temperatures are calculated by using equivalent heat-

resistance and thermal loads. 

 

1 1

1 1 1

C (K + H) T =

C (1 ) (K + H) T (1 )

i i

i i i i i

t

t t R R

 

    

 

  

  

          

             (11.11) 

1

1 1

1 1 1

K T

K C (K + H) T

R = C (1 ) (K + H) T R (1 )R

i

i i

i i i i i

R

t

t t

 

    



 

  



   

          

 

The integral variable  used in Eq. (11.8) is classified below, which will affect the convergence 

condition.   

  = 0.0 : Euler-Forward differentiation method (Conditional convergence depending on the 

magnitude of t ) 

  = 0.5 : Crank-Nicolson (Central differential) method (Unconditional convergence) 

  = 2/3 : Galerkin method (Unconditional convergence) 

  = 1.0 : Backward method (Unconditional convergence) 
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Stresses in mass concrete at each stage of construction are obtained by considering the results of 

heat transfer analysis such as nodal temperature distribution, changes in material properties due to 

changes in time and temperature, time-dependent shrinkage, time and stress-dependent creep, etc. 

The following outlines some important concepts associated with thermal stress analysis and 

pertinent items considered in MIDAS. 

 

Equivalent concrete age based on temperature and time 

 

Changes in material properties resulting from the process of maturing concrete can be expressed 

in terms of temperature and time. Even a group of nodes have been cast at the same time, the 

strength gains can be different if the temperature distribution is uneven. In order to reflect such 

phenomenon, an equivalent concrete age is created on the basis of time and temperature. The 

equivalent concrete age is used to calculate the concrete strength gain and is calculated using 

CEB-FIP MODEL CODE 90. 

 

Equivalent concrete age based on CEB-FIP MODEL CODE 90 is given by, 

 

1 0

exp
4000

13.65
273 ( ) /

n

eq i

i i

t t
T t T




 
  

 
  

where, 

eqt  : Equivalent concrete age (days) 

it  : Time interval at each analysis stage (days) 

( )iT t  : Temperature during each analysis stage ( C ) 

0T  : 1 C  
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Calculation of compressive strength of concrete using equivalent concrete age 

 

Various national standards are used to calculate compressive strength of concrete, which is then 

used to calculate the modulus of elasticity, tensile strength, etc.  

 

ACI 209  

(28)( )c c

eq

t
t

a bt
 


 

where, 

a, b : Coefficients based on the cement classification 

(28) c  : Concrete compressive strength at 28 days 

 

CEB-FIP MODEL CODE 90 

1/ 2

(28)

1

28
( ) exp 1

/
c c

eq

t s
t t

 

               

 

where, 

s  : Coefficients based on cement classification 

(28) c  : Concrete compressive strength at 28 days 

1t  : 1 day 

 

Japanese Concrete Standard Specifications 2002 

(28)( ) 


c c

eq

dt
t

a bt
 

( ) ( ) tensile ct c t  
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where, 

(28) c  : Concrete compressive strength at 28 days 

, ,a b d  : Coefficients based on cement classification 

4.5, 0.95, 1.11  a b d (Normal Portland cement) 

6.2, 0.93, 1.15  a b d (Moderate Portland cement) 

2.9, 0.97, 1.07  a b d (High-early-strength cement) 

c  : Tensile strength development coefficient ( 0.44 ) 

KS concrete code (1996) 

(91)
( )c c

eq

t
t

a bt
 


 

where, 

a, b : Coefficients based on cement classification 

(91) c  : Concrete compressive strength at 91 days 

 

Deformations resulting from temperature changes 

 

By using the changes in nodal temperatures at each stage obtained from heat transfer analysis, 

thermal strains are calculated followed by calculating equivalent loads based on the stiffness.   

 

Deformations due to Shrinkage 

 

Additional deformations and stresses develop due to shrinkage after initial curing of concrete in 

formwork supported on falsework. MIDAS adopts ACI 209 and CEB-FIP MODEL CODE, etc. to 

include the shrinkage effects in thermal stress analyses, which reflect the cement type, structural 

configuration and time. 

 

Deformations due to Creep 

 

Additional deformations and stresses develop as a result of sustained stresses in concrete 
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structures. MIDAS adopts ACI 209, CEB-FIP MODEL CODE 90, Japanese Code, etc. to consider 

the effects of creep. 
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Heat of hydration analysis is a time-dependent analysis, and as such construction stages need to 

be reflected in the analysis. During the construction stages, changes in geometric configurations 

and boundary conditions of structures take place, and prestress and additional loads may be 

introduced. Fig. 11-(1) shows a change in a structural model based on construction stages. 

Structures are added and thermal boundary conditions are changed at different construction stages. 

However, the analysis model and the structural boundary conditions must remain unchanged at a 

given construction stage. Each construction stage consists of a number of time steps, and loads 

may be added or removed at each time step. The self weight of a new structural model becomes 

reflected only once at the first time step of each construction stage. 

 

Input data at each construction stage are structural models, structural and heat boundary 

conditions and loads at different time steps. Note that the user can only add the structural models 

and structural boundary conditions at each construction stage. However, the user is allowed to add 

or remove heat boundary conditions. In addition, it is possible to add or remove the loads at any 

time step of a construction stage. 

prescribed temperature

convection boundary

structure 1

structure 1

structure 2

soil
soil

 

  



 

m
id

a
s

F
E

A
 

We Analyze and Design the Future 

 

Heat of hydration analysis retains the results of heat transfer analysis and thermal stress analysis. 

The results of heat transfer analysis include nodal temperatures and nodal compressive and nodal 

tensile strengths based on the equivalent concrete age. The results of thermal stress analysis 

include nodal displacements, element stresses and crack ratio in which a ratio of the element 

stress to the tensile stress is expressed. The user can check all the results at each time step of any 

construction stage. 

 

Results of heat transfer analysis 

 

    a. Nodal temperatures 

    b. Compressive and tensile strengths at nodes based on the equivalent concrete age 

 

Results of thermal stress analysis 

 

    a. Nodal displacements. 

b. Stresses in elements 

    c. Crack ratio 
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Unlike elastic material behaviors, plastic material behaviors exhibit permanent or irreversible 

deformations even after unloading applied loads in a structure. In order to reflect such properties, 

deformations are formulated by assuming separation of elastic and plastic components of the total 

deformations.  

 e pε ε ε       (12.1) 

Hook’s law defines the stress and strain relationship in the elastic range. Applying Eq. (12.1), can 

we then define the stress as follows: 

 e p  σ Eε E ε ε                                        (12.2) 

where, E represents Young’s Modulus. 

 

The stress at a point in a structure subjected to loading is a measure of defining the elastic-plastic 

state of the point. Such basis varies from materials to materials of specific material properties 

such as steel, concrete, etc., which is referred to as yield criterion. The yield criterion of a material 

is defined through experiments on various stress states. The stresses at the point of instigating 

plastic flow can be expressed by a function in the space of stresses.  

 ,  0f  σ      (12.3) 

where, f is the yield function, and is the hardening parameter. If the yield function, f is less 

than zero, plastic flow does not occur, and if it is greater than zero, plastic flow takes place. 
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Plastic strain is expressed by separating the scalar and vector components according to the 

Koiter’s rule.  

n n
i

p i i i

i 1 i 1

g
 

 


 


 ε m

σ
      (12.4) 

where, 
ig is the plastic potential function, which is a function, 

i ( , )g σ , of the stress and 

hardening parameter,  . i
  is a plastic multiplier, which must satisfy the Kuhn-Tucker 

conditions. 

0f  ;  i 0  ; i 0f      (12.5) 

From the above conditions, we note that if the yield function, f is less than zero, i
  always 

becomes zero and plastic flow does not occur. m in Eq. (12.4) represents the vector defining the 

direction of plastic strain. If at this point we define the direction of plastic strain as /f σ  

using the yield function, f , rather than using the plastic potential function, g , then this is 

referred to as the associated flow rule. Conversely, the non-associated flow rule refers to the 

method by which the direction of plastic strain is defined as /g σ using the plastic potential 

function. Generally for those material models such as von Mises and Tresca, which show constant 

deviatoric stresses along the hydrostatic pressure in the space of stresses, the use of the associated 

flow rule is common. However, for such materials as Mohr-Coulomb and Drucker-Prager, which 

show deviatoric stresses varying with the hydrostatic pressure in the space of stresses, the non-

associated flow rule is used. Applying the non-associated flow rule for a material model in which 

deviatoric stresses vary with the hydrostatic pressure, has the effect of constraining the 

phenomenon of excessive volumetric expansion due to non-coincident directions of stresses and 

strains. However, this results in a non-symmetric stiffness matrix, which requires a non-symmetric 

solver and has the drawback of slow convergence.  

 

In case of concrete structures where concrete is generally confined by ties or hollow steel sections, 

plastic analysis can be quite sensitive to the effect of such confinement. The non-associated flow 
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rule is recommended for such a case.   

 

 

Hardening behavior in an elasto-plastic model can be divided into strain hardening and plastic 

work hardening. The strain hardening can be defined by using the normalized equivalent plastic 

strain.  

 
T

p p2
 

3
  ε Q ε         (12.6) 

where, diag[  1,   1,   1,   1/ 2,   1/ 2,   1/ 2]Q represents a diagonal matrix. Plastic work 

hardening defines its behavior using the plastic work done by a unit stress. 

T p  σ ε                                       (12.7) 

All the above two types of hardening are integrated over time, t , to calculate the hardening 

parameter up to the present load step. 

 dt                                        (12.8) 

MIDAS currently supports strain hardening only. Depending on the properties of hardening 

behavior expressed by the hardening parameter,  , the hardening rule is classified into ‘isotropic 

hardening’, ‘kinematic hardening’ and ‘mixed hardening’ of the two types. Isotropic hardening 

exhibits the behavior of isotropic expansion or contraction of the yield surface depending on the 

hardening parameter as shown in Fig. 12-(1a). Kinematic hardening on the other hand exhibits the 

behavior of translation of the origin of the yield surface without any expansion or contraction of 

the yield surface as shown in Fig. 12-(1b). Mixed hardening exhibits the combined behavior of the 

two behaviors above as shown in Fig. 12-(1c). MIDAS currently supports isotropic hardening 

only.  
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The state of internal change of an elasto-plastic material is defined by the incremental constitutive 

relationship, which is expressed by the type of finite increases. Plastic flow begins upon reaching 

the yield condition and is controlled by plastic state parameters like  . The constitutive equation 

for the state of finite strain in non-associated flow can be based on Eq. (12.2), which is written as, 
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( ) ( )p    σ E ε ε E ε m                                        (12.9) 

When the state of stress lies on the yield surface, the linearized consistency condition is defined 

by expanding the first order of the Taylor function as below. 

 
T

T, 0
f f

f h


  
 

   
     

   
σ σ n σ

σ
             (12.10) 

where, 
f




n
σ

, h is hardening modulus, and 
f

h



 

 
 

 
  

By substituting Eq. (12.9) into Eq. (12.10), we can arrange the plastic multiplier,   as, 

T

Th
 



n E
ε

n Em
        (12.11) 

Substituting Eq. (12.11) into Eq. (12.9), the constitutive equation is expressed in the form of an 

incremental relationship of stress and strain as,  

T

epTh

 
   

 

Emn E
σ E ε E ε

n Em
       (12.12) 

where, epE is the elasto-plastic tangent operator, which is the tangent stiffness matrix of the 

material. By introducing the non-associated flow rule at this point, epE becomes non-

symmetrical due to m n . 
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Integration methods for an incremental type of equations can be largely classified into an explicit 

forward Euler algorithm with sub-incrementation and an implicit backward Euler algorithm. In 

the explicit forward Euler algorithm, the direction of plastic flow is calculated at the point A (Fig.  

12-(2) and 12-(3)) where an incremental stress and the yield surface meet. Whereas in the implicit 

backward Euler algorithm, it is calculated at the final stress point B (Fig. 12-(4)). 

 

The explicit forward Euler algorithm is relatively simple and does not require the process of 

iterative calculations at the integration points, but has the following drawbacks:  

 

-. It is stable only in certain conditions. 

-. Sub-increments are required to attain permissible accuracy. (Fig. 12-(3)). 

-. Additional corrective measures are required to return to the yield surface. (Fig. 12-(3)). 

 

Also, the explicit forward Euler algorithm can not constitute a consistent tangent stiffness matrix. 

On the contrary, the implicit backward Euler algorithm can sufficiently obtain accurate results 

without sub-incrementation and artificial return and is stable unconditionally, but requires the 

process of iterative calculations at the integration points. However, this algorithm is more efficient  

than the explicit forward Euler algorithm in that it allows us to formulate a consistent tangent 

stiffness matrix. 
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In the explicit forward Euler method, elastic strain is first assumed, and then elastic incremental 

stress is calculated. (point B in Fig. 12-(2a)). 

 
e

B X e

  

  

σ E ε

σ σ σ
     (12.13) 

The next step is to calculate the magnitude of incremental stress defining the elastic limit. The 

initial elastic incremental stress is divided into the admissible stress increment,   e1 r σ  

within the elastic limit and the inadmissible stress increment, 
erσ  beyond the yield function. 

The incremental stress defining the elastic limit is calculated using the equation below. (point A in 

Fig. 12-(2a)). 

 

  X e

B

B X

1 , 0f r

f
r

f f

   




σ σ

    (12.14) 

The subscripts in Eq. (12.14) and Eq. (12.15) are referred to in Fig. 12-(2). 

 

In order to use the sub-incrementation method, the incremental stress, erσ , which has deviated 

from the yield surface, is divided into k small sub-incremental stresses for convergence. (Fig. 12-

(3)). The number of sub-increments is directly related to the margin of error, which is calculated 
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as Eq. (12.15). 

  effB effA effAINT 8 1k           (12.15) 

effA and
effB represent the effective stresses at the points A and B in Fig. 12-(2a) respectively. If 

the state of the final stress does not lie on the yield surface, the stress state is moved to the yield 

surface by the following artificial return method (point D in Fig. 12-(3)): 

 

C
C T

C C

D C C C

f

h




 


  

n Em

σ σ Em

     (12.16) 

 

 

 

 

 

The fact that the explicit forward Euler method predicts the next stress value using the component 

in the direction perpendicular to the yield surface at the point A, the stress at the intersection must 

be calculated. If the component in the direction perpendicular to the yield surface is predicted at 
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the point B in Fig. 12-(4), the stress calculation at the intersection becomes unnecessary.  

C X e B B B     σ σ σ Em σ Em    (12.17) 

If the yield function, f is thus first-order expanded about the point B using a Taylor series, we 

obtain, 

T

T

B B B B B

f f
f f f h  



  
          

  
σ n Em

σ
  (12.18) 

The failure function at the newly calculated point becomes zero. The above equation is then 

rearranged for  as, 

B

T

B B B

f

h
 

 n Em
     (12.19) 

Using this, 
Cσ is calculated by the implicit backward Euler method as follows: 

 
C B B=  - σ σ Em      (12.20) 

At this point, 
Cσ at the point C always does not lie on the yield surface. In order to treat this, the 

point C now becomes a reference point to predict a new stress value, and the above calculations 

are iteratively performed until the stress value falls on the yield surface.  

 

 

 

The plastic constitutive equation is formulated as below. The finite incremental stress is 

determined by the elastic part of the finite incremental strain vector as, 

  p    σ E ε ε Eε Em        (12.21) 

Since the present stress must be always located on the yield surface, Eq. (12.21) must satisfy the 

consistency condition. After substituting Eq. (12.11) into Eq. (12.21) and rearranging it for finite 

incremental strain, the finite incremental stress can be calculated as Eq. (12.22). 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 
h

 
   

 

T

epT

Emn E
σ E ε E ε

n Em
       (12.22) 

If a consistent tangent stiffness matrix is used in conjunction with the Newton-Raphson iterative 

process in the explicit forward Euler method, much faster convergence is achieved due to the 

characteristic of the 2nd order convergence in the Newton-Raphson iterative process. In order to 

reflect the 2nd order characteristic, Eq. (12.18) is differentiated, which then becomes,  

 


   
 

  
   

  

m m
σ Eε Em E σ E

σ
      (12.23) 

where,   represents the magnitude of the change in  . Eq. (12.23) is rearranged as,  

 Aσ Eε Em       (12.24) 

where, 


  


m
A I E

σ
, 




 

 
  

 

m
m m  

If we now define 1H A E , Eq. (12.24) is rearranged as,  

  σ H ε m       (12.25) 

If we rearrange Eq. (12.25) in the total strain term using the linearized consistency condition, the 

next equation is obtained.  

T

epTh

 
   

 

Hmn H
σ H ε C ε

n Hm
       (12.26) 

epE in Eq. (12.22) is referred to as a tangent stiffness matrix, and epC in Eq. (12.26) is referred to 

as a consistent tangent stiffness matrix. 

 

MIDAS limitations 

Isotropic Plasticity Only 

Isotropic Hardening Only 

Strain Hardening Only 
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Presenting an yield function in terms of stress components in the generally used state of multi-

axes accompanies many difficulties geometrically and physically. Therefore, an yield function is 

typically presented using independent components on stress coordinate axes. The yield condition 

is defined using the following principal stresses.  

 1 2 3, , 0f          (12.27) 

One of the convenient methods for presenting an yield function is to use stress invariants. 

 

 

Stress occurring at any point in a material is presented using the stress tensor, ij . And using the 

directional vector, jn defining the direction of the principal stress, the following equation is 

established. 

  0ij ij jn        (12.28) 

where, ij is Kronecker delta. 

In the above Eq. (12.28), 0jn  , and the necessary condition to satisfy Eq. (12.28) is noted as, 

0ij ij        (12.29) 

The matrix Eq. (12.29) can be presented in a cubic equation for principal stress as follows:  

3 2

1 2 3 0I I I          (12.30) 

where,  
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     

1

2 2 2 2

2 1

3

3 1 1

1

2

1 1 1

3 2 6

x y z ii

x y y z z x xy yz zx ij ji

x xy xz

yx y yz ij jk ki ij ji

zx zy z

I

I I

I I I

   

          

  

       

  

   

       

   

 (12.31) 

1I , 
2I  and 

3I  can be represented using the principal stresses,
1 ,

2 and
3 . 

1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I

I

I

  

     

  

  

  



    (12.32) 

 

 

The stress tensor, ij is divided into hydrostatic pressure and deviatoric stress components, 

which can be expressed as,   

ij ij m ijs         (12.33) 

where,   1/3 /3m x y z I       , which is referred to as mean stress. And 

ij ij m ijs      is referred to as deviatoric stress, which exhibits the state of pure shear. In order 

to calculate the invariants for deviatoric stress, it is transformed into the type of calculating 

invariants of the stress tensor, ij . 

0ij ijs s       (12.34) 

Eq. (12.34) is expressed in an equation form as, 

3 2

1 2 3 0s J s J s J        (12.35) 

where, 
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     

1

2

2 2 2 2 2 2

3

0

1

2

1
   

6

1

3

ii x y z

ij ji

x y y z z x xy yz zx

x xy xz

ij jk ki yx y yz

zx zy z

J s s s s

J s s

s

J s s s s

s

        

 

 

 

    



         
  

 

 (12.36) 

1J , 
2J  and 

3J  are expressed in terms of deviatoric principal stresses, 
1s , 

2s  and 
3s . 

       

 

1 1 2 3

2 2 22 2 2

2 1 2 3 1 2 2 3 3 1

3 3 3

3 1 2 3 1 2 3

0

1 1

2 6

1

3

J s s s

J s s s

J s s s s s s

     

   

         
 

   

 (12.37) 

1I , 
2I , 

3I , 
1J , 

2J  and 
3J  are all invariants expressed in scalar retaining independent 

characteristics on coordinate axes. In order to present the yield function in a geometrically 

convenient way, three invariants, 
1I , 

2J  and 
3J  among these are mainly used. 

1I , 
2J and 

3J  are referred to as 1st, 2nd and 3rd invariant respectively. 

 

Yielding in most material models is mainly predominated by the deviatoric stresses. Accordingly, 

the representation of an yield function by hydrostatic and deviatoric stress components is very 

conveniently used to define the geometric shape of the yield function. Next we will review the 

method of representing the stress state of a point  1 2 3,  ,    P in terms of hydrostatic axis and 

deviatoric axis components. 
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In case a point  1 2 3,  ,  P    is defined, which is expressed in a stress state in the space of 

principal stresses, as in Fig. 12-(5), a vector OP can be defined. The vector OP can be divided 

into the vector ON , which follows the hydrostatic axis, and the vector NP , which exists on 

the deviatoric plane perpendicular to the hydrostatic axis. Their scalars are as follows: 

1

2

1

3

2

I

J





 

 

ON

NP

     (12.38) 

θ0

r

σ1

σ2 σ3

N

P(σ1, σ 2, σ 3)
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Fig. 12-(6) shows the deviatoric plane, which is perpendicular to the hydrostatic axis. The 

previously defined vector NP needs to be rotated by
0 from the

1 axis in order to define the 

point P  on the deviatoric plane. This 
0 is referred to as similarity angle, which is written as, 

1 3
0 3 / 2

2

1 3 3
cos

3 2

J

J
 

 
   

 

    (12.39) 

0  retains the following range: 

00
3


       (12.40) 

For numerical analysis, the use of Lode Angle  is more convenient than using 
0 , which is 

defined as. 

1 3

3/ 2

2

1 3 3
sin

3 2

J

J
 

 
   

 
    (12.41) 

Here, 
0

6


    whose range is as follows: 

6 6

 
        (12.42) 
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The Rankine model defines the yielding of a material using the maximum principal stress, 
1 , 

which is expressed as, 

 1( , ) 0tf      σ           (12.43) 

Expressing Eq. (12.43) using the invariants, 
1 2,   and I J  , we obtain,  

    1
1 2 2

2 2
, , , sin 0

3 33
t

I
f I J J     

  
      

  
 (12.44) 

Also expressing Eq. (12.43) in terms of ,   and    , we find, 

    
2 2

, , , sin 0
36 3

tf


        
  

      
  

 (12.45) 

The Rankine model is mainly defined with tension cutoff behavior. Together with the Mohr-

Coulomb or Drucker-Prager model, it is used to define tension behaviors of soils, concrete, etc. 

Fig. 12-(7) shows the 3-dimensional shape of the Rankine model in the space of stresses. As in 

Fig. 12-(8), the shape on the  plane is a triangle, and it can be defined in a linear function for 

hydrostatic axis on the meridian plane. 

 

Hardening 

The hardening behavior model follows the strain hardening hypothesis, which assumes that 

hardening progresses with increase in plastic deformation. The relationship between the plastic 

strain, pε and the hardening parameter,  is thus defined as, 

 1 1 2 2 3 3

2

3
p p p p p p            (12.46) 

Rearranging the above, 

          (12.47) 
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The Tresca model has been developed for an yield criterion of metallic materials. When the 

maximum shear stress at a point in a material reaches the limiting value, k , the material is 

assumed to yield as follows: 

   1 3

1
, 0

2
f k k                      (12.48) 

where, 1 2 3      

If Eq. (12.48) is expressed in terms of stress invariants, 2J and  ,  

 
 2 2

2

2 2 4
, sin sin 2

3 33

2 cos ( ) 0

f J J k

J Y

    

 

    
        

    

  

 (12.49) 

where, ( ) 2Y k  , which represents the yield stress. 

If Eq. (12.48) is expressed in terms of invariants, and  ,  

 , 2 cos ( ) 0f Y           (12.50) 

Since this criterion does not consider the effect of hydrostatic pressure acting on the yield surface, 

it is unrelated to the stress 1I  on the hydrostatic pressure surface, and deviatoric stress varies 

with Lode angle on the deviatoric surface. As such, the Tresca yield criterion becomes a regular 

hexagonal column parallel with the hydrostatic axis in the space of principal stresses as shown in 

Fig. 12-(9), and it is depicted as a regular hexagon on the deviatoric plane. Fig 12-(10) shows the 

yield surface on the  -plane and the meridian plane. 

 

Hardening 

The hardening behavior model follows the strain hardening hypothesis, which assumes that 

hardening progresses with increase in plastic deformation. The relationship between the plastic 

strain, pε and the hardening parameter,  is thus defined as, 

 1 1 2 2 3 3

2

3
p p p p p p            (12.51) 



  

m
id

a
s

F
E

A
 

We Analyze and Design the Future 

From Eq. (12.51), principal plastic strains are appropriately calculated and rearranged to give the 

relationship between the hardening parameter and the plastic multiplier as,  

2

3
         (12.52) 
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The Von Mises model is one that is mostly used for analysis of metallic materials. It assumes that 

yielding occurs when a regular octahedral shear stress, oct reaches the limit, which is formulated 

as,  

  
2

0
3

oct octf k        (12.53) 

or, 

   2

2 2 0f J J k        (12.54) 

Expressing in terms of the principal stresses, 1 , 2  and 3 , 

      
2 2 2 2

1 2 2 3 3 1 6k               (12.55) 

Here, k  = yield stress under pure shear  

If we consider the uni-axial case, 

    2 23 0f J J Y             (12.56) 

Here, ( )Y k  , which represents the yield stress. Eq. (12.56) is the most widely used form, 

which is only dependent on the stress invariant, 
2J  and is also referred to as the

2J theory. The 

Von Mises yield surface retains a circular shape, which is parallel with the hydrostatic axis in the 

space of principal stresses as shown in Fig. 12-(11). If the von Mises and Tresca criteria are 

coincided at the compressive meridian and the tensile meridian, i,e., ( / 6)cr    and 

( / 6)tr   , the von Mises’ surface becomes a circle circumscribing the Tresca’s hexahedral 

surface (Fig. 12-(12a)). In this case, the maximum difference in expected yield stress occurs along 

the shear meridian ( 0)  , and the ratio of the yield shear stresses of the von Mises and Tresca 

criteria is 2 / 3 1.15 . On the other hand, if the two criteria are coincided at the shear 

meridian (identical k value), the von Mises’ circle is inscribed by the Tresca’s hexahedron. The 

maximum expected difference between the two criteria occurs along the compressive meridian 

( / 6)   and the tensile meridian ( / 6)  (Fig. 12-(12b)). 
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Hardening 

Like the Tresca model, the Von Mises hardening behavior model follows the strain hardening 

hypothesis, which assumes that hardening progresses with increase in plastic deformation. The 

relationship between the plastic strain, pε and the hardening parameter,  is thus defined as, 

 1 1 2 2 3 3

2

3
p p p p p p             (12.57) 

Rearranging Eq. (12.57), we obtain, 

          (12.58) 
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The material yield criterion of the Mohr (1900) model is defined as, 

  F       (12.59) 

The peak shear strength, on a plane is assumed to be only related to the normal stress on the 

same plane. Eq. (12.59) describes the yield surface of a Mohr circle, and the yield 

function, ( )F  is determined by experiments. The Mohr criterion assumes that a material yields 

at the instant when the largest Mohr circle becomes in contact with the Coulomb yield surface. 

This means that the middle principal stress 2 1 2 3( )     does not influence the yield 

criterion. The simplest form of the Coulomb yield surface is a straight line whose equation for the 

envelope of this line is written as, 

tanc         (12.60) 

 where, ,c   = shear strength parameters of materials 

  c  = cohesion 

    = internal friction angle 

 

The yield criterion of Eq. (12.60) is said to be the Mohr-Coulomb criterion. The fact that the 

criterion is simple and very accurate, it is widely used for materials, which exhibit the property of 

changing shear strengths with change in compressive stresses.  

 

Expressing the Mohr-Coulomb equation in terms of principal stresses, we obtain,  

   
1 3

1 sin 1 sin
1

2 cos 2 cosc c

 
 

 

 
      (12.61) 

Eq. (12.61) can be written in terms of 1 2,I J and  as,  

 1 2 1 2

1 1
, , sin cos sin sin cos 0

3 3
f I J I J c     

 
      

 
 (12.62) 

The Mohr-Coulomb criterion retains the shape of an irregular hexagonal pyramid in the space of 
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principal stresses, and the meridian is a straight line as shown in Fig. 12-(13). And the deviatoric 

shape on the  -plane 1 2 3( 0)     becomes an irregular hexagon as shown in Fig. 12-

(14a). In order to draw the irregular hexagon, the lengths of 
0tr and 

0cr are required on the  

meridian plane at / 6    as shown in Fig. 12-(14b), which are defined as, 

 
0

2 6 cos

3 sin
t

c
r







      (12.63) 

 
0

2 6 cos

3 sin
c

c
r







              (12.64) 

From Eq. (12.63) and Eq. (12.64), 0 0/t cr r is found. 

 0

0

3 sin

3 sin

t

c

r

r









             (12.65) 

The fact that all deviatoric sections of the Mohr-Coulomb yield surface geometrically resemble 

one another, the ratio, /t cr r  of any deviatoric plane (i.e., for different values of 1I  or  ) 

remains constant. 

 0

0

3 sin

3 sin

t t

c c

r r

r r






 


        (12.66) 

For the purpose of controlling the phenomenon of excessive volumetric expansion, the non-

associated flow rule can be applied here. For this, the plastic potential function can be defined 

using the expansion angle,   instead of using the internal friction angle,  as follows: 

 1 2 1 2

1 1
, , sin cos sin sin

3 3
g I J I J    

 
    

 
 (12.67) 
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Hardening 

The hardening behavior model follows the strain hardening hypothesis, which assumes that 

hardening progresses with increase in plastic deformation. The relationship between the plastic 

strain, pε and the hardening parameter,  is thus defined as, 

 

 1 1 2 2 3 3

2

3
p p p p p p                             (12.68) 

Rearranging Eq. (12.68), we obtain, 

 21
1 sin

3
         (12.69) 
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The Drucker-Prager model has originated from the von Mises model, which has been modified 

and extended by Drucker and Prager (1952) and widely used for practical problems. It is also 

referred to as an extended von Mises criterion. Expressing the yield function and plastic potential 

function of the Drucker-Prager model in terms of stress invariants, 1I and 2J , we obtain, 

 
 

 

1 2 2 1

1 2 2 1

, 0

,

f I J J I k

g I J J I





   

 
    (12.70) 

where,  
 

2sin

3 3 sin








 ,  k c ,  

 

6cos

3 3 sin








 ,  

 

2sin

3 3 sin








 

If  is zero, Eq. (12.70) reverts to the von Mises yield criterion. In order to define the value 

 of the plastic potential function, g , the value of the angle of expansion,  is additionally 

required. Fig. 12-(15) shows the Drucker-Prager yield surface in the space of principal stresses. 

The yield surface retains the shape of a cone with the axis of a spatial diagonal line (stress axis of 

hydrostatic plane, 1 2 3    ). 

 

The Drucker-Prager yield surface can be considered to have been tailored to the behaviors of 

concrete and foundation materials in that the von Mises yield surface has been extended to vary 

along the hydrostatic pressure. 
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Hardening 

The hardening behavior model follows the strain hardening hypothesis, which assumes that 

hardening progresses with increase in plastic deformation. The relationship between the plastic 

strain, pε and the hardening parameter,  is thus defined as, 

 

 1 1 2 2 3 3

2

3
p p p p p p                          (12.71) 

Rearranging Eq. (12.57), we obtain, 

21 2                                              (12.72) 
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Analysis models for concrete cracking can be classified into a discrete crack model [discontinuum 

model] and a smeared crack model [continuum model] (see Fig. 13-(1)). The discrete crack model 

uses finite elements at which concrete cracks are separately represented as boundaries. In the 

smeared crack model, concrete cracks are assumed to be scattered and distributed, such that 

discrete elements are not used at the crack locations. 

 

 

The discrete crack model has the advantage of being able to specifically represent such behaviors 

as physical discontinuity due to concrete cracking and failure and bond slips of reinforcing bars. 

However, it has some disadvantages in that the accuracy of analysis significantly depends on the 

material properties required, and that finite element modeling can be quite complex. Cracks can 

be modeled by automatically dividing elements at the crack locations and adding interface 

elements in advance at the locations where cracks are expected. Interface non-linearity in Chapter 

14 explains the use of interface elements in a discrete crack model. 
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The smeared crack model assumes that locally generated cracks are evenly scattered over a wide 

surface. This model is known to be suitable for reinforced concrete structures with reasonable 

amount of reinforcement, and its finite element modeling is relatively simple. The smeared crack 

model can be classified into orthogonal and non-orthogonal crack models depending on the 

assumption of angles of crack development. The orthogonal crack model assumes orthogonal 

crack directions, whereas the non-orthogonal crack model assumes non-orthogonal directions of 

cracks. Also, depending on the numerical analysis methods for cracks, the smeared crack model is 

further classified into various models such as a decomposed-strain model and a total strain model.  

 

The decomposed-strain model in the smeared crack model calculates the total strain in terms of 

material strain and crack strain. The material strain is quite versatile in its expandability since it 

can include elastic strain, plastic strain, creep strain, thermal strain, etc. The crack strain also can 

be expanded into a non-orthogonal multi-directional crack model as it can include a number of 

crack strains at different angles. However, its disadvantages exist in that the algorithm is complex; 

selection of material properties is difficult; and convergence may become an issue. 

 

The total strain model in the smeared crack model can be rather simply formulated using total 

strain without having to decompose it into the strain components. In addition, its algorithm is easy 

to understand because the total strain model uses only one stress-strain relationship for tensile 

behavior including cracks and one for compressive behavior. It is also more practical since the 

input for material properties for defining nonlinear behaviors is relatively simple enough. 

 

 

MIDAS uses the total strain crack model classified under the smeared crack model. As shown in 

Fig. 13-(2), it provides two methods, which are separated into the fixed crack model and the 

rotating crack model depending on the reference crack axes. The former assumes that the axes of 

cracks remain unchanged once the crack axes are defined. On the contrary, the latter is a method 

in which the directions of the cracks are assumed to continuously rotate depending on the changes 

in the axes of principle strains. 
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In both cases of the fixed and rotating models, the first crack at the integral points always initiates 

in the directions of the principle strains. Concrete materials exhibit isotropic properties prior to 

cracking and anisotropic properties after cracking. MIDAS treats the properties of concrete as  

orthotropic materials after cracking. As such, the normal stresses and shear stresses are calculated 

on the crack surfaces. Since we assume that the directions of the incipient cracks remain 

unchanged in the fixed crack model, the normal stresses and shear stresses exist on the crack 

surfaces as shown in Fig. 13-(2a). However, new cracks are assumed to develop in the directions 

of the current principle strains in the rotating crack model, while ignoring the cracks developed at 

the previous stage. Thus, only the normal stresses are present on the crack surfaces as shown in 

Fig. 13-(2b). As a result, the fixed crack model and the rotating crack model can be said to use the 

concepts of fixed stress-strain and coaxial stress-strain respectively. Since MIDAS considers only 

the cases of perpendicular crack angles, the fixed crack model and the rotating crack model in 

MIDAS can be classified into an orthogonal crack model.  

 

Although the fixed crack model can realistically reflect the physical characteristics of the crack 

phenomena, the orthogonal crack model tends to somewhat overestimate the stiffness and strength 
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of materials in comparison with a non-orthogonal crack model. On the contrary, the algorithm for 

the rotating crack model is relatively simple, and its convergence is superior due to the fact that 

this model is unrelated to the previous cracking conditions. Because of such merits, the rotating 

crack model has been used for nonlinear analyses of reinforced concrete structures over the years.  

 

The constitutive model on the basis of total strain is founded on the Modified Compression Field 

Theory proposed by Vecchio and Collins1. This theory was formulated on the basis of two-

dimensional models. MIDAS has been implemented with an extension into 3-dimensional models 

based on the theory proposed by Selby and Vecchio2. 

 

 

1 Vecchio, F. J., and Collins, M. P. The modified compression field theory for reinforced concrete elements subjected to 

shear. ACI Journal 83, 22 (1986), 219–231. 

2 Selby, R. G., and Vecchio, F. J., Three-dimensional Constitutive Relations for Reinforced Concrete. Tech. Rep. 93-02, 

Univ. Toronto, dept. Civil Eng., Toronta, Canada, 1993. 
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The following parameters need to be defined in order to analyze the Total Strain Crack Model. 

  

 - Crack Model Type 

 - General Concrete Properties  

 - Tensile Behavior 

 - Compressive Behavior 

 - Shear Behavior 

 - Lateral Influences 

 

 

The total strain crack model implemented in MIDAS contains the smeared fixed crack model 

(SFCM) and smeared rotating crack model (SRCM). The rotating crack model and the fixed crack 

model are known to well represent the cracking behaviors of general reinforced concrete 

structures. Especially the fixed crack model has been recognized to accurately simulate the 

physical behaviors of concrete cracks. The difference between the two models exists in the 

process of determining the crack directions, which is explained in the Transformation of Crack 

Direction section in detail.  

 

 

 

The required material properties to analyze crack models can be defined either by the user or 

automatically by the program using pertinent codes (MIDAS currently uses CEB-FIP 1990). 

 

 



  

m
id

a
s

F
E

A
 

We Analyze and Design the Future 

 

The user-defined material properties are as follows: 

 

1) Young’s Modulus 

2) Poisson’s Ratio [default = 0.0] 

3) Tensile Strength 

4) Compressive Strength 

5) Fracture Energy [if necessary]  

 

 

This is used when the user wishes to define the values presented in codes. Material properties are 

now calculated by CEB-FIP 1990 and applied to analysis. By entering the following two values, 

material properties are obtained through the equation of the relationship between compressive 

strength and tensile strength as well as the equation of the relationship between compression 

strength and fracture energy, as presented in CEB-FIP 1990. 

 

(1) Grade: Characteristic compressive strength [N/mm2] 

(2) Dmax: Maximum aggregate size [mm] 

 

In order to properly define the necessary material properties in the total strain crack model, the 

user needs to input the concrete grade and the maximum aggregate size (Dmax). The concrete 

grade represents
ckf (characteristic compressive strength), which is classified below. 

 

Concrete classes: C12, C20, C30, C40, C50, C60, C70 and C80 

C60 here means fck=60 [N/mm2]. 

 

CEB-FIP 1990 uses Grade and Dmax to calculate the Young’s modulus, mean compressive strength, 

mean tensile strength and fracture energy. 
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The mean compressive strength is expressed by,  

cm ckf f f       (13.1) 

where, 8f   [MPa]. 

 

The Young’s modulus is expressed in terms of the mean compressive strength (fcm),  
1

3

0

0

cm
c c

cm

f
E E

f

 
  

 
         (13.2) 

where, 4

0 2.15 10cE   [ N/mm2 , and the reference mean compressive strength, fcm0 is 10 

[N/mm2].  

 

The mean tensile strength is calculated as, 
2

3

, 0,

0

ck
ct m ctk m

ck

f
f f

f

 
  

 
     (13.3) 

where,
0ctkf  is 1.40 [N/mm2], and

0ckf is 10 [N/mm2]. 

The fracture energy is related to the compressive strength and the maximum aggregate size, Dmax, 

which uses the following equation: 

0.7

0

0

cm
f f

cm

f
G G

f

 
  

 
      (13.4) 

 fcm0 is 10 [N/mm2]. Table 13.1 shows the values of 0fG corresponding to the maximum size of 

aggregates.  

 

Dmax (mm) 0fG  (J/m2) 

8 25 

16 30 

32 58 

0fG
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The total strain crack model implemented in MIDAS depicts all the ultimate states of materials 

such as cracking and crushing, and especially shear behavior can be clearly defined through the 

relationship between shear stress and shear strain. In case of unloading, the total strain crack 

model is intended to point towards the origin point in the stress-strain curve. The detailed 

analytical process is outlined below. 

 

Concrete subjected to loadings resists tensile or compressive forces, and it can reach the ultimate 

states of materials such as cracking and crushing. In case the fixed crack model is used, the shear 

behavior can be explicitly presented. The material deterioration by cracking and crushing of 

concrete can be assessed by means of a vector field α , which comprises six internal damage 

variables,
k ( 1,...,2k nstr  ). nstr represents the number of the principal stresses. The 

variables ( 1,..,k nstr ) related to the maximum tensile strain will be greater than or equal to 

zero. And the variables ( 1 ,...,2k nstr nstr   ) identifying the minimum compressive strain 

will be less than zero. The fact that no damage recovery is assumed to take place, the absolute 

values of the internal damage variables can only increase.  

 

The loading-unloading-reloading conditions can be understood by additional unloading 

constraints (variables 
kr ). The unloading constraint variables are determined for both tension 

and compression zones individually, which are used to represent stiffness degradation in each 

zone separately.  
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The unloading constraint variable in the tensile zone is expressed by,  

1

1

0

( 1,..., )

1

t t

i k k

k

t t

i k k

if

r k nstr

if

 

 









 


 
 

   (13.5) 

 

The unloading constraint variable in the compression zone is expressed by, 

1 3

1 3

0

( 1 ,...,2 )

1

t t

i k k

k

t t

i k k

if

r k nstr nstr

if

 

 



 



 

 


   
 

 (13.6) 

The internal variables are updated as follows: 

1

t t t

i



   α α W ε       (13.7) 

where,    
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,

,

1 1,...,

1 1 ,...,2

k k k

k nstr k k

W r k nstr

W r k nstr nstr

   
 

    

W   (13.8) 

Assuming that damage recovery does not occur, the stress in the j direction can be expressed as, 

( , ) ( , )j j nst j nstf g  α ε α ε     (13.9) 

In addition to the internal variable j in the j direction representing the uniaxial stress and strain 

relationship, the internal variables and strains in the remaining directions influence the stress, 

which is the reason for expressing it as a function of variable α and the principal strain 

tensor
nstε . If unloading and reloading are defined by the secant method considering the 

maximum and minimum strains in each crack direction, the loading-unloading function denoted 

by gj can be expressed by, 

1 0

1 0

j j j

j

j j

j

j nstr j j

j

j nstr j nstr

if

g

if

  


 

  


 



 


  


 

   



   0 1g    (13.10) 

 

The uniaxial stress–strain relationship (13.9) is based on the basic strength in the crack directions 

f, multiplied by the loading–unloading function g. The material model implemented in MIDAS 

takes into account the effect of confinement and the effect of lateral cracking on the basic strength. 

These factors need to be properly considered because they influence not only the maximum 

strength, but generally the shape of the stress–strain curve. 
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The constitutive model of the total strain crack model is defined as stress as a function of the total 

strain. This concept is also known as hypo-elasticity if loading and unloading follow the same 

stress-strain path. In MIDAS, loading and unloading take place on separate stress-strain paths. 

Especially unloading takes place with a secant slope. For the stress-strain relationship of the total 

strain crack model, it is possible to use a number of approaches applying user-defined models in 

addition to the hysteretic curves provided by MIDAS.   

 

The concept of orthogonal crack models, which will be explained in this section, is a 

representative method widely used for crack analysis. It defines the stress-strain relationship 

depending on the principal directions of strain vectors. 

  

The rotating crack model is also known as a coaxial stress-strain method. This model has been 

recognized to predict the behaviors of reinforced concrete structures very well. On the other hand, 

the fixed crack model is known as a fixed stress-strain method. This model defines the stress-

strain relationships of all subsequent cracks based on the fixed coordinate axes of the incipient 

crack direction. The above two concepts can be easily explained in a similar framework even if 

they differ in crack directions ( nst ) being fixed or rotated. 

 

The basic concept of the total strain crack model is that stresses are calculated considering the 

crack directions. The strains in the element coordinate system are renewed by considering the 

incremental strain xyz .  

 

 1 1

t t t t t

i xyz xyz i xyz   

         (13.11) 

The strains in the crack directions are calculated by multiplying the strains in the element 

coordinate system by the transformation matrix. 
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 1 1

t t t t

i nst i xyz  

  T      (13.12) 

The transformation matrix T in the rotating crack model is determined by the current strain 

expressed by, 

1( ).t t

i xyz

T T      (13.13) 

On the other hand, the transformation matrix in the fixed crack model is fixed by the incipient 

crack direction. 

 

The strain transformation matrix is obtained by the Jacobi method. If the strain tensor is expressed 

in its general form by, 

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 

E     (13.14) 

the eigenvectors are saved in the rotation matrix R below.  

xn xs xt

yn ys yt

zn zs zt

c c c

c c c

c c c

 
 

     
  

R n s t    (13.15) 

 

cosxn ijc  is the cosine between the i axis and the j axis. The strain transformation matrix T 

is then calculated by substituting the appropriate values, 

 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

xn yn zn xn yn yn zn zn xn

xs ys zs xs ys ys zs zs xs

xt yt zt xt yt yt zt zt xt

xn xs yn ys zn zs xn ys yn xs yn zs zn ys zn xs xn zs

xs xt ys yt zs zt xs yt ys xt ys zt zs yt

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c


  

 

T

2 2 2

zs xt xs zt

xt xn yt yn zt zn xt yn yt xn yt zn zt yn zt xn xt zn

c c c

c c c c c c c c c c c c c c c c c c

 
 
 
 
 
 
 
 
    

(13.16) 
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in a general three-dimensional stress situation. For the other stress situations the appropriate sub-

matrix should be taken. The constitutive model is then formulated in the crack coordinate system, 

which is generally given by, 

 1 1( )t t t t

i nst i nst   

 
       (13.17) 

Finally the stress vectors in the crack coordinate systems are transformed into the element 

coordinate systems and renewed.  

1 1

t t T t t

i xyz i nst  

  T     (13.18) 

In the rotating crack model, the transformation matrix T is determined like 1( )T t t

i xyz

T  by the 

current strain. In the fixed crack model, the transformation matrix defined by the incipient crack is 

used. 
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An iterative scheme is used for concrete crack analysis because of its nonlinearity. In order to 

satisfy the equilibrium between external and internal force vectors, one of the incremental 

iterative procedures such as the Newton-Raphson method is used. To this end, the constitutive 

model needs to be defined by a proper stiffness matrix. MIDAS uses the secant stiffness and 

tangent stiffness approaches to determine the stiffness matrix. The secant stiffness approach is 

especially suitable for finding excellent and stable solutions to analyses of reinforced concrete 

structures, which widely develop cracks. On the contrary, the tangent stiffness approach is known 

to be very appropriate for analyses of local cracking or crack propagation. 

 

 

The tangent stiffness matrix in the element coordinate system is given by, 

tangent

TD T D T      (13.19) 

where, T represents the strain transformation matrix, and tangentD  represents the tangent stiffness 

matrix in the crack coordinate systems.  

 

The tangent stiffness matrix can be decomposed into four sub-matrices as follows: 

 

nn n

tangent

n



 

 
  

 

D D
D

D D
     (13.20) 

 

Dnn is the tangent stiffness sub-matrix of the normal components of the local (crack) strain; D  

represents the tangent stiffness sub-matrix of the shear components of the local strain; and 

Dnand Dn are the tangent stiffness sub-matrices representing the coupling terms between the 

normal and the shear strain. 
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In a co-rotational concept, the coupling sub-matrices are equal to zero and the sub-matrix D is 

dependent on the principal stress components as has been derived by several authors3. The sub-

matrix then becomes, 

 

1 2

1 2

2 3

2 3

3 1

3 1

0 0
2( )

0 0
2( )

0 0
2( )



 

 

 

 

 

 

 
 

 
 

  
 

 
 

  

D   (13.21) 

 

It is clear that the shear stiffness terms are not independent on the stresses in the principal 

directions. This is a direct result of the spin of the principal coordinate system. In a fixed concept 

the coupling sub-matrices are not necessarily zero but depend on the specific relationship between 

the shear-retention and the normal strain components. In general, the sub-matrix Dn is equal to 

zero because the normal stress components are not dependent on the shear components of the 

strain vector. On the other hand, the sub-matrix Dn  is given by, 

 

3 Crisfield, M. A., and Wills, J., Analysis of R/C panels using different concrete models, J. Eng. Mech. Div., ASCE 115, 3 

(1989),  

578–597. 

Feenstra, P. H., Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete, PhD thesis, Delft University of 

Technology, 1993. 

Rots, J. G., Computational Modeling of Concrete Fracture, PhD thesis, Delft University of Technology, 1988. 

Willam, K. J., Pramono, E., and Sture, S., Fundamental issues of smeared crack models, In Proc. SEM/RILEM Int. Conf. 

on Fracture of Concrete and Rock, Houston 1987 (New York, 1989), S. P. Shah and S. E. Schwartz, Eds., Springer-Verlag, 

pp. 142–157. 
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θn

ns ns ns

nn ss tt

st st st

nn ss tt

tn tn tn

nn ss tt

  

  

  

  

  

  

   
 
   

   
  

   
   
 
    

D      (13.22)

This matrix becomes zero when the shear retention is independent from the normal (crack) strain. 

The shear terms of the tangent stiffness matrix is usually given by, 

 

θθ

0 0

0 0

0 0

ns

ns

st

st

tn

tn













 
 
 

 
  

 
 
 

  

D      (13.23) 

The normal stiffness terms, Dnn, are partial derivatives as can be expected. Because coupling due 

to lateral strain effects is included in the calculation of the principal stresses, the off-diagonal 

terms are not equal to zero, and the resulting matrix is non-symmetric. 

 

 

 

        (13.24) 

 

 

 

The starting point for the derivation of the stiffness terms Dnst is the stress–strain relation given in 

(13.9). The derivative with respect to the principal strain vector, εnst, becomes, 

 

 

nn

nn nn nn

nn ss tt

ss ss ss

nn ss tt

tt tt tt

nn ss tt

  

  

  

  

  

  

   
 
   

   
  

   
   
 
    

D
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T T

( , ) ( , )i i i i i
i nst i nst

nst nst nst nst nst

f f g g
g f

             
      

            

α α
α ε α ε

ε ε α ε ε α ε
 (13.25) 

The derivative of the internal variables with respect to the strain vector 
nst α ε , given by the 

matrix W in (13.8), results in, 

 

T T( , ) ( , )i i i i i
i nst i nst

nst nst nst

f f g g
g f

           
      

          
α ε W α ε W

ε α ε α ε
   (13.26) 

This is elaborated as, 

 

 

 

1 1 1 4 1

2 2 2 5 2

3 3 3 6 3

1 1 1

1 2 3

1

2 2 2
2

1 2 3

3

3 3 3

1 2 3

1 1

1 2

1

2

3

(1 ) 0 0

0 (1 ) 0

0 0 (1 )

0 0

0 0

0 0

0 0

0 0

0 0

nst

m r m r E

m r m r E

m r m r E

f f f

g
f f f

g

g
f f f

f f

g

g

g

  

  

  

 

  
 
   
 

  
 

   
 
    
    

             
 
    

 

 
 
 

  
  

D

11

26

32 2 2

41 2 6

53 3 3

1 2 6 6

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

rf

r

rf f f

r

rf f f

r



  

  

  
  

   
     
  
     

     
  

        







 

       (13.27)
 

where, mi is introduced for the state of strain, 

1 if   0

0 if   0

i

i

i

m





 


     (13.28) 

The secant stiffness terms in the tensile and compressive regimes respectively are given by, 
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( , )j nst
j

j

f
E




α ε
  

( , )j nst
j

j nstr

f
E

 


α ε

  (13.29) 

The tangent stiffness terms are calculated with a forward-difference approach in which the j-th 

component is disturbed with a small magnitude h according to, 

( , ) ( , )

( , ) ( , )

i nst j i nsti

j

i j nst i nsti

j

f h ff

h

f h ff

h





 




 




α ε e α ε

α a ε α ε
     (13.30) 

The components of the vector ej are equal to zero except for the j-th component. This holds true 

also for the vector aj. The step length h for the forward difference approximation is taken equal to 

tol.εj , respectively tol.αj.  tol is the square-root of the machine precision, which is assumed equal 

to 1 x 10-16. 

 

The diagonal stiffness terms of the stiffness matrix Dnst given in (13.27) are elucidated by writing 

the stiffness terms as, 

 

 (1 ) (1 ) (1 )

i

i

i i
i i i i nstr i i i i nstr

i i nstr

f f
m r m r E g r r





 
 








   
       

   

 

                                                           (13.31) 

If a tensile strain state is active, i.e., mi  = 1 and ri+nsrt = 1, the stiffness term further reduces to, 

(1 )i i
i i i i

i i

f
r E g r



 

 
  

 
     (13.32) 

In a more convenient format, we obtain, 
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 

 

   ,  1, 1   

   ,      0, 1  

i i i

i

i
i i i

i

E if   unloading r g

f
if   loading r g






  
 

 
  



  (13.33) 

 

In a compressive strain state, i.e., mi = 0 and ri = 1, the stiffness term reduces to, 

(1 )i i
i nstr i i i nstr

i i nstr

f
r E g r



 
 



 
  

 
   (13.34) 

This results in, 

 

 

  ,  1, 1   

   ,      0, 1  

i i nstr i

i

i
i i nstr i

i nstr

E  if   unloading r g

f
if   loading r g












  
 

 
  



 (13.35) 

 

 

The secant approach is used according to the stiffness of an orthotropic material with zero 

Poisson’s ratio in all directions. This results in the secant stiffness matrix in the principal 

coordinate system. 

1

2

3

secant

12

23

31

0 0 0 0 0

0 0 0 0

0 0 0

0 0

. 0

E

E

E

G

sym G

G

 
 
 
 
 

  
 
 
 
 
  

D

    (13.36)
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Concrete subjected to compressive stresses shows a pressure-dependent behavior, i.e., the strength 

and ductility increase with increasing isotropic stress. Due to the lateral confinement, the 

compressive stress–strain relationship is modified to incorporate the effects of the increased 

isotropic stress. Furthermore, it is assumed that the compressive behavior is influenced by lateral 

cracking. To model the lateral confinement effect, the parameters of the compressive stress–strain 

function, fcf and p, are determined with a failure function. The failure function gives the 

compressive stress, which causes failure as a function of the confining stresses in the lateral 

directions. 

 

If the material is cracked in the lateral direction, the parameters are reduced with the factor cr 

for the peak strain, and with the factor cr for the peak stress. A possible relationship is given in 

section 13.9.3. It is tacitly assumed that the base curve in compression is determined by the peak 

stress value 
crp cff f   and the corresponding peak strain value 

crp p    . The effect of 

these coefficients will be explained in detail in section 13.9. In summary, 

crp cff f    
crp p      (13.37) 

The base function in compression, with the parameters fp and αp, is modeled with a number of 

different predefined and user-defined curves. The predefined curves are the constant curve and the 

brittle curve, and the linear and exponential softening curves based on the compressive fracture 

energy, Gc. The linear hardening and the saturation hardening curves are available. Figure 13.4 

shows the available hardening-softening curves in compression. Hardening-softening lines, which 

are available to express compression, are divided into the parabolic, parabolic exponential and 

hardening curve suggested by Thorenfeldt et. al.4. 

4 Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J., Mechanical properties of high-strength concrete and applications 

in design, In Proc. Symp. Utilization of High-Strength Concrete (Stavanger, Norway)
 
(Trondheim, 1987), Tapir. 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 

 

 

 

 

Young’s modulus is used for a general elastic model. There is no additional input (see Fig. 13-4a).  

 

The ideal model is that when a tensile stress exceeds the tensile strength, the stress does not 

increase any more (See 13-(4b)). 

The compressive strength is defined as, 0.0cf    
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The Thorenfeldt model uses the value of compressive strength as, 0.0cf   (see Fig. 13-(4c)). 

 

 

The equation of the Thorenfeldt curved line is expressed by, 

1

i
p nk

p
i

p

n
f f

n



 



 
 
 
  
  

   
  
  

   (13.38) 

where,  0.80
17

ccf
n   , 

1 if   0

0.67 if   
62

p

cc
p

k f

 

 


 

 
 



 

 

 

The linear hardening model is that after yielding at the compressive yielding point 
cf , the 

compressive behavior depends on the reduced stiffness 
harE , which changes linearly (See Fig. 

13-4d).  

 

p 

fp 

f 

 
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Use 0.0, 0.0c harf E   for input 

 

 

The user can define a stress curve by assigning a certain stress-strain function. The user can input 

30 points maximum; the first point should be 0.d0 (see Fig . 13-4e).  

[for the condition < 0.d0, strain will be monotonically increased. ] 

 

The Saturation Model uses the following material properties as a set of input variables (see Fig. 

13-4f).  

Initial compressive strength:   

Ultimate compressive strength:  

Constant hardening modulus:  

Decaying factor:  

  

 

The Parabolic Model suggested by Feenstra5 is derived on the basis of the fracture energy. This 

curved line is presented by the following three characteristic variables (see Fig. 13-4g). 

Compressive strength:  

Compressive fracture energy:  

Characteristic element length:  

 

 

5 FEENSTRA, P. H., Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete, PhD thesis, Delft 

University of Technology, 1993. 

0.0cof 

0.0cf  

0.0harE 

0.0 

0.0cf 

0.0cG 

0.0h 
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The strain 
/ 3c , at which one-third of the maximum compressive strength fc is reached, is 

/ 3

1

3

c
c

f

E
       (13.39) 

The strain
c , at which the maximum compressive strength is reached, is 

/ 3

4
4

3

c
c c

f

E
        (13.40) 

Note that 
/ 3c and 

c are determined irrespective of the element size or compressive fracture 

energy. Finally, the ultimate strain
u , at which the material is completely softened in 

compression, is 

3

2

c
u c

c

G

h f
        (13.41) 

Based on the above variables, the following curved line is defined: 

f 
c 

fc 

 
c/3 

fc /3 

u 

Gc /h 
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1
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3

1
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1     

0     
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c j c

c

j c j c

c c j c

c c c c

j c

c c j u

u c

u j

f if

f if

f

f if

if


 



   
  

   

 
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 

 


  

                       


  
     
    




 (13.42) 

It could now easily be verified that the fracture energy
cG and the characteristic element length h 

govern the softening part of the curve only: 

3

1

3

u

u

c

c

j c c
j c j

u c

G
f d f

h







 
 

 

  
    
   

   (13.43) 
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The relationship between the crack stress cr

nn and the crack strain cr

nn in the normal direction can 

be written as a multiplicative relation. 

.

( )
cr

cr cr nn
nn nn t cr

nn ult

f y


 


 
   

 
    (13.44) 

tf is the tensile strength, and .

cr

nn ult is the ultimate crack strain. The general function 

(..)y represents the actual softening diagram. 

 

If the softening behavior on the constitutive level is related to the Mode-I fracture energy 
I

fG  

through an equivalent length or crack bandwidth denoted as h, the following relation can be 

derived: 

0
( )

cr
nn

cr
nn

I cr cr cr

f nn nn nnG h d



  




      (13.45) 

Substituting Eq. (13.44) into Eq. (13.45) results in, 

0
.

cr
nn

cr
nn

cr
I crnn
f t nncr

nn ult

G h f y d













 
  

 
    (13.46) 

with the assumption that ft is a constant. Changing from the variable cr

nn to 

.

cr

nn

cr

nn ult

x



       (13.47) 

     and consequently .

cr cr

nn nn ultdx   results in the relation, 

  .
0

( )
x

I cr

f t nn ult
x

G h f y x dx 



      (13.48) 
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It is tacitly assumed that the ultimate crack strain .

cr

nn ult is finite. The final expression for the 

ultimate crack strain is now given by, 

 

.

1
I

fcr

nn ult

t

G

h f



        (13.49) 

The factor α is determined by the integral, 

0
( )

x

x
y x dx




        (13.50) 

The factor .

cr

nn ult is assumed to be constant during the analysis and is considered to be an element-

related material property, which can be calculated from the material properties, the tensile strength 

ft, the fracture energy 
I

fG and the element area represented by the equivalent length h. 

 

A snap-back in the constitutive model is possible if the absolute value of the initial slope of the 

softening diagram is greater than the Young’s modulus of the material, and if it is assumed that the 

initial tangent of the tension softening diagram results in the greatest value of the tangent stiffness. 

The condition, which has to be fulfilled then is noted as,  

 

0cr
nn

cr

nn

cr

nn

d
E

d







        (13.51) 

This can be expressed as, 

. 0

t

cr

nn ult x

f dy
E

dx


       (13.52) 

This results in an expression for the ultimate crack strain, which is noted as, 

. . .min

0

cr crt
nn ult nn ult

x

f dy

E dx
 



        (13.53) 

 

with .

cr

nn ult determined by Eq. (13.49). If the condition given in (13.53) is violated, there are 
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various possibilities to solve this problem. Firstly, it is possible to decrease the equivalent length h, 

but this property is an element property and consequently a fixed value. Secondly, it is possible to 

increase the fracture energy I

fG since this will result in an increase in the ductility of the material. 

The final possibility is to decrease the tensile strength ft , which implicitly results in an increase in 

the ductility since the fracture energy remains constant in this case. 

 

The most obvious choice is to reduce the tensile strength because this has some physical meaning. 

The probability of reduced strength is higher if the sampling area is larger. This implies that the 

tensile strength should be reduced in larger elements since stress concentrations are not captured 

with these elements. So, if the condition of (13.53) is violated, the tensile strength should be 

reduced to, 

2

.

0

I

f

t red

x

G E
f

dy
h

dx




       (13.54) 

Alternatively, the element size could be reduced such that the crack bandwidth h , is equal to a 

maximum of 

max
2

0

I

f

t

x

G E
h

dy
f

dx




      (13.55) 
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The tensile behavior model defined by the total strain crack model has elastic, ideal, brittle, linear, 

exponential, hordijk, multi-linear and user-defined behaviors. These models can be divided on the 

basis of the different theories as follows: 

  

The total strain crack model materializes the softening function based on the fracture energy. The 

models based on the softening function are: linear softening curve, exponential softening curve, 

and nonlinear softening curve suggested by Hordijk6. In case of a smeared crack model, these 

models have a relation with crack bandwidth. Next, there is a tensile behavior, which has no direct 

effect on the fracture energy. This behavior can be depicted in the concept of total strain. The 

models belonging to this group are defined as, the ideal (Constant tensile), multi-linear and brittle 

behaviors. Finally, MIDAS allows the user to use the user-defined subroutine, USRCRV, to assign 

a tensile behavior. 

 

6 Hordijk, D. A., Local approach to fatigue of concrete, PhD thesis, Delft University of Technology, 1991. 
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The elastic model generally uses Young’s modulus. There is no additional input (see Fig. 13-7a). 

 

 

The ideal model is that when tensile stress exceeds the tensile strength, the stress remains 

unchanged (See 13-(7b)). In this case, the tensile strength is assigned by 0.0tf  . 

 

 

Brittle behavior is characterized by the full reduction of the strength after the strength criterion 

has been violated (Fig. 13-8). This model involves a discontinuity. Before the peak, there is only 

elastic strain. Beyond the peak, the stress drops to zero immediately; the elastic strain vanishes; 

and, we have only crack strain. The sudden stress drop, indicated by the dashed line in Fig. 13-8, 

in fact involves energy dissipation, which is related to the peak strain peak

nn and the crack band 

width. In this case, the tensile strength is assigned by 0.0tf  . 

1

2

peak

f t nnG f h       (13.56) 

where, peak

nn is a fixed value equal to ft/E. 
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The linear softening model is observed when tensile stress exceeds tensile strength (See Fig. 13-9). 

 

Tensile fracture energy:  

Crack band width:  

 

Use the following values as input 

Tensile strength:  

Tensile fracture energy:  

Crack band width:  

 

 

t

nn
cr

nn
cr

f

σ



nn.ult
cr

I

f
G h

 

 

The relation of the crack stress is given by, 

 

 

.

.

.

1 0( )

0

cr
cr crnn

cr cr
nn nn ultcrnn nn

nn ult

t cr cr

nn ult nn

if

f
if


   

 


  

 
   


   (13.57) 

The factor for the ultimate crack strain is given by, 

1 1

0 0 0 0

1
( ) ( ) 0 (1 )

2
y x dx y x dx dx x dx

 

           (13.58) 

 

0.0I

fG 

0.0h 

0.0tf 

0.0I

fG 

0.0h 
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This results in an ultimate crack strain. 

. 2

I

fcr

nn ult

t

G

h f
        (13.59) 

It is easily verified that  

0

1
x

dy

dx 

       (13.60) 

The minimum value of the ultimate crack strain becomes, 

nn.ult.min

cr tf

E
                (13.61)  

The reduced tensile strength is written as, 

2

I

f

t

G E
f

h
      (13.62) 

 

 

The exponential softening model is that exponential softening occurs when tensile stress exceeds 

the tensile strength (See Fig. 13-7e). The slope of softening is determined on the basis of the 

fracture energy, 
I

fG  and crack band width, h . 

Use the following values as input: 

Tensile strength:  

Tensile fracture energy:  

Crack band width:  

 

 

 

 

 

 

 

0.0tf 

0.0I

fG 

0.0h 
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Hordijk7, Cornelissen & Reinhardt8  proposed an expression for the softening behavior of 

concrete, which also results in a crack stress equal to zero at a crack strain .

cr

nn ult  (Fig. 13-10).  

Use the following values as input: 

 

Tensile strength:  

Tensile fracture energy:  

Crack band width:  

 

 

 

 

 

 

 

 

The function is defined by, 

 

7 HORDIJK, D. A. Local Approach to Fatigue of Concrete. PhD thesis, Delft University of Technology, 1991. 

8 CORNELISSEN, H. A. W., HORDIJK, D. A., AND REINHARDT, H. W.  

Experimental determination of crack softening characteristics of normal weight and lightweight concrete.  

Heron 31, 2 (1986).
 

0.0tf 

0.0I

fG 

0.0h 
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 
     

 

3

1 2

. .

3

1 2 .

.

.

1 exp ...

1 exp 0

0 0

cr cr

nn nn

cr cr

nn ult nn ult

cr cr cr
nn nn cr crnn

nn nn ultcr

t nn ult

cr cr

nn ult nn

c c

c c if
f

if

 

 

  
 



 

     
      
       
  

      
 
 

  
 
  

(13.63) 

 

The parameters are 
1 23 6.93c c  . The parameter for the ultimate crack strain is given 

by, 

 

 

1

0 0 1

1
3 3

1 2 1 2
0

3 3 3 2 3 3 3

1 1 2 1 2 2 1 2

4 3 4 3 3

2 1 2 1 2 2 2

4

2 2

( ) ( ) 0

1 ( ) exp( ) (1 )exp( )

12 12 6 2 2

12 exp( ) 2 exp( )

2 exp( )

y x dx y x dx dx

c x c x x c c dx

c c c c c c c c

c c c c c c c

c c


 

  

     

    


   

  









  (13.64) 

This results in  = 0:195 for the parameters 1 3,c 
and 2 6.93c 

. The ultimate crack strain 

then is written as, 

. 5.136

I

fcr

nn ult

t

G

h f
       (13.65) 

For the softening diagram of Hordijk et al., the following relation can be derived: 

  2 3 3

1 1 2 1 2 1 2 0

0

3

2 1 2

3 ( ) 1 ( ) exp( ) (1 )exp( )

(1 )exp( )

x

x

dy
c c x c c x c x c c

dx

c c c





      

    

(13.66) 

The minimum value of the ultimate crack strain is then given by, 
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. .min 6.957cr t
nn ult

f

E
      (13.67) 

and the reduced tensile strength is written as, 
1

2

0.739

I

f

t

G E
f

h

 
   

 
    (13.68) 

 

 

The multi-linear model is that softening occurs when tensile stress exceeds the tensile strength 

(See Fig. 13-7g). At most 30 nodes can be defined as input, and the first node should be 0.d0. 

[for the condition > 0.d0, strain will be monotonically increased.] 

 

 

 

The following condition should be satisfied for the initial tangential slope: 

 

.1 .0

.1

t t

cr

nn

f f
E




       (13.69) 
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The modeling of the shear behavior is only necessary in the fixed crack concept where the shear 

stiffness is usually reduced after cracking. For the current implementation in MIDAS, only a 

constant shear stiffness reduction is modeled, i.e., 

crG G               (13.70) 

where,  the shear retention factor, 0 1  . For the rotating crack concept, the shear retention 

factor can be assumed equal to one. 
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The Poisson effect on a material determines the lateral displacement of a specimen subjected to a 

uniaxial tensile or compressive loading. If these displacements are constrained, a passive lateral 

confinement will act on the specimen. This effect is considered important in a three-dimensional 

modeling of reinforced concrete structures. In the work of Selby & Vecchio9 this effect is 

modeled through a pre-strain concept in which the lateral expansion effects are accounted for with 

an additional external loading on the structure. This implies that the computational flow of the 

finite element engine is adapted to this method. The Poisson effect is taken into account via the 

equivalent uniaxial strain concept. In case of linear-elastic behavior, the constitutive relationship 

in a three- dimensional stress–strain situation is given by, 

1

1
(1 )(1 2 )

1

nst nst

E
v

v

  

 
 

 

 
 

 
  
  

σ ε    (13.71) 

which can be expressed as, 

1

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )
0 0

1
0 0

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )
0 0

1

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )

nst nst

E

E

E

  

     

  

     

  

     

 
 

       
  

               
 

       

σ ε  (13.72) 

        

9 Selby, R. G., and Vecchio, F. J., Three-dimensional Constitutive Relations for Reinforced Concrete, Tech. Rep. 93-02, 

Univ. Toronto, dept.Civil Eng., Toronta, Canada, 1993. 
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This relationship is now expressed in terms of equivalent uniaxial strains as, 

0 0

0 0

0 0

nst nst

E

E

E

 
 


 
  

σ ε      (13.73) 

The equivalent uniaxial strain vector 
nstε is defined by 

1

2

3

1

2

3

1

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )

1

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )

1

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )

nst







  
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

  


     


  

     

 
 

  
 
 

 
 

        
   

   
        

  
 

       

ε







(13.74)  

        

nst nstε Ρ ε       (13.75) 

This concept can be performed for a nonlinear material model. The stress vector in the principal 

coordinate system, (13.17), is evaluated in terms of the equivalent uniaxial strain vector,
123ε , and 

not in terms of the principal strain vector, 
nstε . The equivalent uniaxial strain vector is simply 

determined when the principal strain vector and the (constant) Poisson’s ratio are known. The 

tangent stiffness sub-matrix Dnst is slightly modified due to the equivalent uniaxial strain concept. 

The matrix is given by, 

 

nst nst
nst

nst nst

 
 
 

σ σ
D Ρ

ε ε
     (13.76) 

 

nst nst σ ε nstε nstε
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The increase in the strength with increasing isotropic stress is modeled with the four-parameter 

Hsieh-Ting-Chen failure surface, which is defined as, 

22 1 1

2
2.0108 0.9714 9.1412 0.2312 1 0c

cc cc cc cc

JJ f I
f

f f f f
       (13.77) 

with the invariants I1 and J2 and defined in terms of the stress in the concrete σci according to 

1 1 2 3c c cI                                                (13.78) 

      2 2 2

2 1 2 2 3 3 1

1

6
c c c c c cJ               (13.79) 

and the maximum principle stress10 fc1. 

 

1 1 2 3max( , , )c c c cf         (13.80) 

This is not the maximum tensile stress but the maximum principal stress. The parameters in Eq. 

(13.77) are determined by fitting of the uniaxial tensile and compressive strength, the biaxial 

compressive strength and experimental data of triaxial tests on concrete specimen. The stress fc3 is 

assumed to result in failure and is determined by scaling the linear elastic stress vector 

c nsts Eσ ε such that Eq. (13.77) holds true. The compressive failure stress in multi-axial 

stress situation is then given by, 

 

3 1 2 3min( , , )c c c cf s          (13.81) 

 

If the scaling factor s is negative, thus resulting in a positive failure stress fc3, the stress vector is 

10 Braa, H. Private communication, 1997. 
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scaled to the tensile side of the failure surface, and the failure strength is set equal to a large 

negative value (-30fcc). The failure strength fcf  is given by, 

3cf cf f       (13.82) 

The peak stress factor K  is given by Selby11,  

1
cf

cc

f
K

f
         (13.83) 

and the peak strain factor is assumed to be given by, 

K K        (13.84) 

In unconfined compression, the values at the peak are given by the values of uniaxial compressive 

strength, and the peak stress factor is equal to one. The parameters of the compressive stress–

strain function now become, 

cf ccf K f   , 0p K   (13.85) 

The value of the initial strain 
0  is given by the relationship, 

0
1

cc

c

n f

n E
   


      (13.86) 

The equations given above result in a gradual increase in the maximum strength in confined 

compression, with an initial slope of the stress–strain diagram given by the Young’s modulus. In a 

full triaxial stress situation, the failure surface cannot be reached and a linear stress–strain relation 

is obtained (see Fig. 13-12). 

 

11 Selby, R. G., and Vecchio, F. J., Three-dimensional Constitutive Relations for Reinforced Concrete, Tech. Rep. 93-02, 

Univ. Toronto, dept. Civil Eng., Toronta, Canada, 1993. 
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The increased ductility of confined concrete is modeled by a linear adoption of the descending 

branch of the Thorenfeldt curve according to, 

 

 1 1
j p

j p p

u p

f f r r f
 

 

 
      

  

    (13.87) 

 

 

 

 



f 

rfp 

fp 

u p

f 

unconfined 

low lateral confinement 

medium lateral confinement 

triaxial loading 
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r is the factor, which models the residual strength of the material (see Fig. 13.13). The ultimate 

strain in compression is assumed to be determined by the ratio between the peak strength and the 

compression strength and the strain at the peak according to, 

 

p

u p

cc

f

f



 
 

  
 

      (13.88) 



The scalar  needs to be determined; currently  = 3 is assumed. The residual strength r fp also 

depends on the ratio between the peak strength and the compressive strength according to, 

 

0

p

cc

f
r r

f


 

  
 

     (13.89) 

r0 is an initial value. Assume r0 = 0.1. 

The linear compression–softening relationship is only applied to the Thorenfeldt curve if the peak 

value fp is considerably larger than the compressive strength fcc. Assume fp  / fcc > 1.05. In case  

lateral compression and lateral cracking result in fp  / fcc < 1.05, the ductility of the material will 

not increase. 

 

 

 

In cracked concrete, large tensile strains perpendicular to the principal compressive direction 

reduce the concrete compressive strength. The compressive strength fp is consequently not only a 

function of the internal variable j, but is also a function of the internal variables governing the 

tensile damage in the lateral directions, l,1 and  l,2. The reduction factors due to lateral cracking 

are denoted as ( )cr cr lat    and ( )cr cr lat    , which are functions of the average 

lateral damage variable given by 
2 2

,1 ,2lat l l    . 
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The relationship for reduction due to lateral cracking is the model according to Vecchio and 

Collins12 (see Fig. 13.14). 

1
1

1
cr

cK
  


     (13.90) 

where,        and       1cr  . 

 

 

12 Vecchio, F. J., and Collins, M. P., Compression response of cracked reinforced concrete, J. Str. Eng., ASCE 119, 12 

(1993), 3590–3610. 

0

0.27 0.37lat
cK





 
   
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The modeling of geometric discontinuities such as discrete cracks in concrete, joints in rock and 

masonry, and bond-slip layers in reinforced concrete is most conveniently done using the 

multipurpose structural interface elements implemented in MIDAS. These elements relate the 

forces acting on the interface to the relative displacement of the two sides of the interface as 

shown in Figure (14-1) for the two-dimensional configuration. 

 

 

n

t
 

 

Interface elements are dealt with in Chapter 4, and this Chapter covers the nonlinear behaviors of 

interface elements. In this section, we describe the relations for the two-dimensional configuration, 

i.e., the line interface elements. In general, the relations are also valid for three-dimensional cases. 

The traction vector t is defined for the two-dimensional case as, 

 

n

t

t

t

 
  
 

t                                    (14.1) 

 

And the vector, which collects the relative displacements, is expressed as, 

 

nu

dt

 
   

 
u                                  (14.2) 

The linear constitutive relation between the traction vector and the relative displacement vector is 

given by, 
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0

0

n nn

tt

t uk

kt dt

      
    

      
                            (14.3) 

 

nk and 
tk are usually assigned large penalty values to model the initial continuous geometry.  

Application of a Gaussian integration scheme to interface elements can lead to spurious kinematic 

element performance under certain conditions. See for instance Gens et al.1, Rots2, Hohberg3 and 

Schellekens4. It is therefore recommended to use a lumped integration scheme for interface 

elements with large dummy stiffnesses. The Newton-Cote scheme has been adopted in MIDAS to 

overcome to the above problem. 

 

The general constitutive relation is assumed to be incrementally linear. 

  t D u                                    (14.4) 

t is the traction vector; u is the vector with the relative displacements; and D is the tangential 

stiffness matrix defined as, 

 

11 12

21 22

D D

D D

 
  
 

D                               (14.5) 

The stiffness coefficients generally depend on 
nu , dt , 

nt , 
tt and possibly on other state 

parameters. The constitutive relations are discussed in the following sections. 

1 Gens, A., Carol, I., and Alonso, E. E. An interface element formulation for the analysis of soil– reinforcement 

interaction. Comp. Geotechnics 7 (1988), 133–151.
 

2 Rots, J. G. Computational Modeling of Concrete Fracture. PhD thesis, Delft University of Technology, 1988.
 

3 Hohberg, J. M. A note on the spurious kinematic oscillatons in FEM joint elements. Earthq. Engrg. Struct. Dynamics 19 

(1990), 773–779.
 

4 Schellekens, J. C. J. Computational Strategies for Composite Structures. PhD thesis, Delft University of Technology, 

1992.



  

m
id

a
s

F
E

A
 

We Analyze and Design the Future 

 

The constitutive law for discrete cracking in MIDAS is based on a total deformation theory, which 

expresses the tractions as a function of the total relative displacements, the crack width 
nu and 

the crack slip dt  (Fig. 14-2). 

 

f
t

f
n

kn

∆un 

 

The relationship between normal traction and crack width and the relationship between shear 

traction and slip are assumed as nonlinear functions. 

 

 

 

n n n

t t

t f u

t f dt

  




                                   (14.6) 

 

Differentiating Eq. (14.6) results in expressions for the tangential stiffness coefficients, 
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                             (14.7) 

 

In general, the normal traction 
nt is governed by a tension softening relation. For structural 

interface elements, MIDAS supports the following relations: 

 

- Brittle cracking model  

- Linear tension softening model  

- Nonlinear tension softening model (Hordijk et al.)  

 

 

Brittle behavior is characterized by the full reduction of the strength after the strength criterion 

has been violated (Fig. 14-3).  

f
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This behavior can be written as 

 

  1 0

0 0

n n n

nt

f u if u

if uf

  
 

   
                    (14.8) 

 

 

In case of linear tension softening (Fig. 14-4), the relation of the crack stress is given by, 
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∆un

∆un,ult

f
t

Gf
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  ,

,

,
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if u uf u

u
f

if u u


       

     

               (14.9) 

with the ultimate crack strain 

, 2

I

f

n ult

t

G
u

f
                                (14.10) 

 

Unloading and reloading can be modeled according to a secant approach or an elastic approach. 
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In the secant approach, the relation between the traction and the relative normal displacement is 

linear up to the origin, after which the initial stiffness is recovered. In the elastic approach, the 

initial stiffness is recovered immediately after the relative normal displacement has become less 

than the current maximum relative normal displacement (Fig. 14-4). 

 

 

 

Hordijk5, Cornelissen & Reinhardt6 proposed an expression for the softening behavior of 

concrete, which also results in a crack stress equal to zero at a crack width ,n ultu  (Fig. 14-5).  

 

f
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tn

Gf

I

∆un,ul t

∆un

 

 

The function is defined by, 

5 Hordijk, D. A. Local Approach to Fatigue of Concrete. PhD thesis, Delft University of Technology, 1991.  

6 Cornelissen, H. A. W., Hordijk, D. A., and Reinhardt, H. W. Experimental determination of crack softening 

characteristics of normalweight and lightweight concrete. Heron 31, 2 (1986).
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
     

    (14.11) 

 

where, the parameters 
1 3c  and 

2 6.93c  with the ultimate crack strain defined by, 

 

, 5.136

I

f

n ult

t

G
u

f
                             (14.12) 

 

Unloading and reloading can be modeled according to a secant approach, an elastic approach or 

by application of hysteresis. In the secant approach, the relation between the traction and the 

relative normal displacement is linear up to the origin, after which the initial stiffness is recovered. 

In the elastic approach, the initial stiffness is recovered immediately after the relative normal 

displacement has become less than the current maximum relative normal displacement (Fig. 14-5). 

The third possibility is to apply the hysteresis model of Hordijk5,7 in which unloading and 

reloading follow different paths (Fig. 14-6). 

7 Janssen, J. G. Mode-I Fracture of Plain Concrete Under Monotonic and Cyclic Loading. Tech. Rep. BI-90-110, TNO 

Building and Construction Research, Rijswijk, The Netherlands, 1990.
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In general, the shear traction 
tt is reduced after cracking according to 
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
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
 
  


                          (14.13) 

where, 
tk is the reduced shear stiffness while 0 1  .  

In general,  may vary between 0.1 to 0.3. If the crack surface is assumed to be smooth, i.e. crack 

Mode-I,  is defined as zero. But generally, it is assumed that the crack surface is not smooth 

and hence 0 1  . 
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A crack can be considered open when its normal relative displacement 
nu has become greater 

than the ultimate magnitude of the normal relative displacement ,n ultu of a softening model. 

For such an open crack, the constitutive model of a rough crack can be utilized. The constitutive 

relation of the rough, open crack is mobilized when the displacement tangential to the crack faces 

has become greater than zero, in the absolute sense. Consider an open crack, which is planar but 

microscopically rough (Fig. 14-7).  

n

t

tn

tn

tt

tt

t

∆u

∆u

n

 

The global crack displacements 
nu and dt are the relative displacements of the two parts of 

the structure, separated by the crack. With this definition, the global crack width is independent of 

the global crack sliding, but the local sliding and width will vary along the crack, depending on 

the crack geometry.  

 

Due to the complexity of the problem, the constitutive laws for crack dilatancy, which have been 
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proposed by various authors, are mostly based on a total deformation theory. This theory 

expresses the tractions as a function of the total relative displacements. See for instance Bažant & 

Gambarova8, 

 

 

 

,

,

n n n

t t n

t f u dt

t f u dt

  


 

                            (14.14) 

 

Differentiating (14.14) results in expressions for the crack stiffness coefficients: 

 

11

12

21

22

n

n

n

t

n

t

f
D

u

f
D

dt

f
D

u

f
D

dt


 


 


 


 
 


 
 

                             (14.15) 

 

The mathematical models for crack dilatancy can be classified into two categories. The first 

category is based on experimental results and has an empirical formulation, which we will denote 

it as empirical crack models. The second category is based on an assumption of the shape of the 

crack surface and has a rational formulation, which we will denote this category as physical crack 

models. Although there are many models which give good results, the ones supported by MIDAS 

have been restricted to a few models that are characteristic of their class. 

 

Empirical crack models 

- Rough crack model (Bazant & Gambarova) 

8 Bažant, Z. P., and Gambarova, P. G. Rough crack models in reinforced concrete. J. Struct. Eng., ASCE 106, 4 (1980), 

819–842.
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- Rough crack model (Gambarova & Karakoc) 

- Aggregate interlock model (Walraven & Reinhardt) 

Physical crack model 

- Two-phase model (Walraven)  

- Contact density model (Li et al.)  

 

 

ž

 

Bažant & Gambarova8 introduced a rough crack model by considering the crack surface as a 

regular array of trapezoidal asperities. Fig. 14-8 shows the response diagram of this model, which 

has been used merely in qualitative sense, i.e., to introduce the general properties to be expected.  

 - The wedging effects of the interface asperities make the shear stress primarily  

   dependent on the displacement ratio / nr dt u  .  

 - For large values of the displacement ratio r , the shear stress must exhibit an     

   asymptote because of micro-cracking and crushing in the mortar close to the aggregate  

   particles.  

 - For large values of the normal crack displacement, the contact at the interface is   

   lost, 
max0.5nu D  , where 

maxD is the maximum aggregate size. 
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The constitutive model is determined by optimizing the fits of Paulay & Loeber‟s9 test results at 

constant crack width. The relations are, 
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where, 
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1 0.000534a  , 

2 145.0a  , 3
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 
   

 
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9 Paulay, T., and Loeber, P. J. Shear transfer by aggregate interlock. ACI–Special Publication SP, 42 (1974),1–15.
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The notation 
cf is used for the compressive cylindrical strength of the concrete, and the more 

frequently used compressive cube strength is denoted by
ccf .  

 

An improvement to the rough crack model of Bažant & Gambarova has been proposed by 

Gambarova & Karakoç10. Fig. 14-9 shows the response diagram for this model. The authors claim 

that their model gives a better formulation for the relation between the normal traction and the 

crack displacements, because this relation is based on tests with a constant confinement stress by 

Daschner & Kupfer11. Further, this formulation takes the effect of aggregate size into account.  
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10 Gambarova, P. G., and Karakoç. A new approach to the analysis of the confinement role in regularly cracking concrete 

elements. In Trans. 7th Struct. Mech. in Reactor Tech. (1983), vol. H, pp. 251–261.
 

11 Daschner, F., and Kupfer, H. Versuche zur Schubkraftübertragung in Riße von Normal- und Leichtbeton. Bauingenieur 

57 (1982), 57–60.
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The relations are, 
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where, 
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Walraven & Reinhardt 12  have deduced linear relations, which fit their experiments 13 on 

lightweight and gravel concrete. We only consider the relations restricted to gravel concrete 

because the main subject of this section is the analysis of crack dilatancy models for gravel 

concrete. Fig. 14.10 shows the response diagram for this model.  

 

12 Walraven, J. C., and Reinhardt, H. W. Theory and experiments on the mechanical behavior of cracks in plain and 

reinforced concrete subjected to shear loading. Heron 26, 1(a) (1981), 5–68. 

13 Walraven, J. C., Vos, E., and Reinhardt, H. W. Experiments on Shear Transfer in Cracks in Concrete. Part I: 

Description of Results. Tech. Rep. 5-79-3, Stevin Laboratory, Delft University of Technology, Delft, 1979.
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The relations which fit the results with the greatest accuracy are, 

 

  

  

0.80 0.707

0.63 0.552

1.8 0.234 0.20
30

1.35 0.191 0.15
20

cc
t n n cc

cc
n n n cc

f
f u u f dt

f
f u u f dt

 

 

      
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             (14.18) 

 

in which 0dt  , 0tf  and 0nf  .  

 

 

The two-phase model proposed by Walraven14 is based on the following assumptions: 

 - The concrete is regarded as a two-phase material, with perfectly stiff spherical    

14 Walraven, J. C. Aggregate Interlock: a Theoretical and Experimental Analysis. PhD thesis, Delft University of 

Technology, 1980.
 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

   inclusions and a perfectly plastic matrix.  

 - The grading of the aggregate matches Fuller‟s curve.  

 - The active contact areas between the inclusions and the matrix are related to interface 

   displacements via geometric relations and take into account the statistics of aggregate 

   distribution. 

 - The compressive contact strength of the matrix is related to the concrete strength while 

   the shear contact strength is related linearly to the compressive contact strength via a 

   constant friction coefficient.  

Walraven has developed this theoretical model for pure aggregate interlock, i.e., aggregate 

interlock in cracks, which are not intersected by reinforcing bars. Fig. 14-11 shows the response 

diagram for this model. Shear stress and normal stress are obtained from equilibrium when a 

given tangential and normal crack displacement occurs.  
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The formulation is given by, 

 

 

 

t pu n t

n pu t n

f A A

f A A

 

 

 
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                           (14.19) 

 

nA and 
tA are the averaged contact areas in the directions n and t between the inclusions and 

the matrix. pu is the matrix compressive strength.   is the coefficient of friction between the 

inclusion and the matrix. The tangential stiffness terms are functions of the crack 

displacement dt , the normal crack displacement 
nu and the distribution of the aggregate. See 

Feenstra15. 

 

 

 

The Contact Density model is based on two proposals and three assumptions by Li et al.16, which 

can be summarized as follows:  

 - A crack plane consists of a number of areas (contact units) with various inclinations. 

   These inclinations from 2 to 2 can be described by a contact density   

   probability function ( ) . 

 - The direction of each contact stress is proposed to be fixed and normal to the initial    

   contact direction denoted as .  

 - The density function ( ) is assumed as a trigonometric function, which is     

   independent of the size and the grading of the aggregate, and of the strength and kinds 

15 Feenstra, P. H. Numerical Simulation and Stability Analysis of Crack Dilatancy Models. Tech. Rep. BI-89-191, TNO 

Building and Construction Research, Rijswijk, The Netherlands, 1989.
 

16 Li, N., Maekawa, L., and Okamura, H. Contact density model for stress transfer across cracks in concrete. J. of the 

Faculty of Engineering, University of Tokyo XL, 1 (1989), 9–52.
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   of coarse aggregates.  

 - The contact force is computed with a simple elastic perfectly plastic model for the   

   contact stress prediction
con .  

 - The effective ratio of contact area ( )nK u expresses the loss of contact when the   

   normal crack displacement 
nu is large enough compared with the roughness of the 

   crack surface.  

Fig. 14-12 shows the response diagram for this model.  
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The mathematical formulation is given by 
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                     (14.20) 

in which the surface area of the crack 
tA is 1.27 multiplied by the sectional area of the crack 

plane. 
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In reinforced concrete, the interaction between the reinforcement and the concrete is highly 

complex. The interaction is governed by secondary transverse and longitudinal cracks in the 

vicinity of the reinforcement. This behavior can be modeled with a bond-slip mechanism where 

the relative slip of the reinforcement and the concrete is described in a phenomenological sense. 

The mechanical behavior of the slip zone is then described by the interface element with a zero 

thickness. 

 

The constitutive laws for bond-slip, which have been proposed, are mostly based on a total 

deformation theory, which expresses the tractions as a function of the total relative displacements. 

In MIDAS, the relationship between the normal traction and the normal relative displacement is 

assumed to be linear elastic, whereas the relationship between the shear traction and the slip is 

assumed as a nonlinear function. 

 
n n n

t t

t k u

t f dt

 


                               (14.21) 

 

Differentiating (14.21) results in expressions for the tangential stiffness coefficients. 
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                              (14.22) 

 

MIDAS offers two predefined curves for the relationships between shear traction and slip, a 
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Cubic function according to Dörr17, and a Power Law relation proposed by Noakowski18. 

Moreover, a user-defined multi-linear diagram is available. 

ö

Dörr17 proposed a polynomial relation between shear traction and slip, which shows a limit if the 

slip is larger than a certain value 
0dt  (Fig. 14-13).  

 

 

 

The formulation of this relationship is given by a cubic function. 
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     (14.23) 

 

Unloading and reloading of the interface shear behavior is modeled using a secant approach. 

17 Döorr, K. Ein Beitrag zur Berechnung von Stahlbetonscheiben unter besonderer Berücksichtigung des 

Verbundverhaltens. PhD thesis, University of Darmstadt, 1980.
 

18 Noakowski, P. Die Berechnung von Stahlbetonscheiben bei Zwangbeanspruchung infolge Temperatur. Deutscher 

Ausschuß für Stahlbeton 296 (1978).
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The relationship between shear traction and slip proposed by Noakowski18 depicts a kind of stick-

slip behavior (Fig. 14-14). The initial shear stiffness is kept linear to avoid unrealistically high 

stiffness when the slip is smaller than an initial value 0

tu . 

 

 

 

 

This relation is formulated with a Power Law. 
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                        (14.24) 

 

where, 1b  . Unloading and reloading is modeled with a secant approach. 
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In general, the interface between two parts of a structure is governed by a frictional behavior. This 

behavior can be modeled with the Coulomb friction model, which has close resemblance with the 

Mohr–Coulomb plasticity model for continuum elements. The assumption of the decomposition 

of the total relative displacement rate u , into a reversible part
eu , and an irreversible part 

pu is, 

e p    u u u                                   (14.25) 

This results in the traction rate vector. 

  e e e p     t D u D u u                              (14.26) 

 

 

 

The basic unknown is the irreversible relative displacement rate 
pu , which is determined 

following the flow theory of plasticity. The Coulomb friction model is basically given by the yield 
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surface and the plastic potential surface: 

2

2

tan ( ) ( ) 0

tan

t n

t n

f t t c

g t t

  



    


 

                     (14.27) 

tan ( )  is the friction coefficient as a function of the internal parameter , and ( )c  is the 

cohesion as a function of the internal parameter . The direction of the irreversible displacements 

is given by the plastic potential function g where the “uplift” is determined by the dilatancy 

angle , where 

 

p g



 


u
t

                                  (14.28) 

MIDAS assumes this angle to be constant. During the process of irreversible relative 

displacements, the consistency condition 0f  has to be fulfilled, which can be elaborated as, 

 

0
Tf f

f 


 
  
 

t
t

                            (14.29) 

which yields the expression of the multiplier  . 

1 1T Tf f

f h




 
  

  



t t
t t

                        (14.30) 

Finally, the evolution of the internal parameter   is assumed to be given by the irreversible 

relative displacement component in the t direction. 

 

p

t  u                               (14.31) 

 

The derivation of the tangent stiffness matrix now becomes straightforward. 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 

1

e p e

T
e e

T
e e

T
e

g
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
 

       
 

  
               

       
   

t D u u D u
t

D D
t tD u t D u

t t
D

t t

   

 

      (14.32) 

which is written in components, 

 

( ) tan
1

tan tan
tan ( ) ( tan tan )

t
n t n t

t

tn t
n t t n

t

t
k h k k k

t

th k k
k k k k h k

t



 
  

 
  

  
  
  
  

t u      (14.33) 

It is obvious that the tangent stiffness matrix becomes nonsymmetrical if the friction angle is not 

equal to the dilatancy angle, i.e.   . A non-associated flow rule models may cause a 

significant increase in the size of allocated memory and analysis time. MIDAS recommends the 

user to define a value in the range of 020   . The analysis may fail to converge due to a 

significant difference between and . 
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This interface material model, also known as the „Composite Interface model‟, is appropriate to 

simulate fracture, frictional slip as well as crushing along material interfaces, for instance at joints 

in masonry. Usually the brick units are modeled as linear elastic, or viscoelastic continua, while 

the mortar joints are modeled with interface elements, which obey the nonlinear behavior 

described by this combined cracking–shearing–crushing model (Fig. 14-16b) (see Lourenço & 

Rots19, and Van Zijl20). In some cases, it is justified to model also the mortar with continuum 

elements, and the interface elements and material behavior are employed to capture the physical 

interface between bricks and mortar (Fig. 14-16a).  

 

 

 

 

 

19 Lourenço, P. B., and Rots, J. G. A multi-surface interface model for the analysis of masonry structures. J. Struct. Eng., 

ASCE 123, 7 (1997), 660–668. 

20 van Zijl, G. P. A. G. Computational Modelling of Masonry Creep and Shrinkage. PhD thesis, Delft University of 

Technology, 2000.
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Two-dimensional interface model in MIDAS is based on the presented formula by Lourenço & 

Rots19 and enhanced by Van Zijl20. It is based on multi-surface plasticity, comprising a Coulomb 

friction model combined with a tension cut-off and an elliptical compression cap (Fig. 14-16). 

Softening acts in all three modes and is preceded by hardening in the case of the cap mode. The 

interface model is derived in terms of the generalized stress and strain vectors. 

 





 
  
 

σ ,    
u

v

 
  
 

ε                            (14.34) 

 

where, and u are the stress and relative displacement respectively in the normal direction of the 

interface, and and v are the shear stress and relative displacement respectively.  

 

 

 

In the elastic regime, the constitutive behavior is described by, 

D                                       (14.35) 
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with the stiffness matrix 

n sdiag k k   D                                   (14.36) 

 

 

Shear slipping  

 

A Coulomb friction yield/crack initiation criterion 

| |f c                                (14.37) 

describes the shear-slipping, with the friction coefficient  equal to the friction angle tan , and 

c is the adhesion. Both adhesion softening and friction softening are captured. The adhesion 

softening is described by, 

 
0

0,
II
f

c

G
c c e



 


                         (14.38) 

 

where, 
0c is the initial adhesion of the brick–mortar interface and 

II

fG is the shear slip fracture 

energy. The friction softening is coupled to the adhesion softening via, 

 

    0
0 0

0

, r

c c

c
 


                     (14.39) 

 

where, 
0 and 

r are the initial and the residual friction coefficients respectively. The 

adhesion and friction parameters are found by linear regression of the micro-shear experimental 

data, while the fracture energy is determined by the appropriate integration of the stress-crack 

width response.  
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The experimentally observed linear relation between the fracture energy and the normal confining 

stress is captured by letting, 

 

0

0

II

f

a b if
G

b if

 



 
 


                 (14.40) 

 

where, a and b are constants to be determined by linear regression of the experimental data.  

Dilatancy 

 

The flow rule is expressed as, 

p

p

u g

v


   
  

  
pε

σ





                           (14.41) 

 

which provides a way of describing the dilatancy, by choice of a suitable potential function 

 

( )

g

sign 

 
  

  σ
                            (4.42) 

 

tan  is the mobilized dilatancy coefficient. Following directly from the flow rule, Eq. 

(14.43) is derived. 

 

( )
p

p

u
sign

v
 




                           (14.43) 

 

By integration, the shear-slip induced normal uplift is found to be, 
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p pu d v                             (14.44) 

 

There is experimental evidence that dilatancy depends on the confining stress and the shear-slip. 

A dilatancy formulation of separate variables, i.e., 

 

1 2( ) ( )pv                                (14.45) 

simplifies curve fitting and ensures convexity of the potential function g . 

 

2 1( ) ( )

T

p

g
g d v d  



 
     

 
 σ                    (14.46) 

 

Therefore, a description of the normal uplift upon shear-slipping is chosen as, 

 

 

 

0

0

0

1 1 0

1 0

p

p

u

v

p u

u

v

if

u e if

e if





 


 

 











  

     
 

 
  


            (14.47) 

 

which yields after differentiation. 
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1 0
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p

p

u

v

u

u

v

if

e if

e if





 


 












  

      
 


 



             (14.48) 

 

 

0  is the dilatancy at zero normal confining stress and shear slip. 
u is the confining 

(compressive) stress at which the dilatancy becomes zero. The dilatancy shear slip degradation 

coefficients   are material parameters to be obtained by, for instance, a least squares fit of 

(14.47) to experimental test data. Note that for tensile stress, a stress-independent dilatancy 

coefficient is assumed. 

 

Softening  

 

A strain softening hypothesis is employed, where the softening is governed by shear-slipping, 

yielding upon substitution of (14.41) and (14.42). 

| |pv                                  (14.49) 

The stress-update can be cast in the standard plasticity predictor–corrector fashion and the 

corrected stresses, together with the plastic strain increment  , or   ̧ can be solved by a 

Newton–Raphson iterative scheme. A consistent tangent modulus is employed for the global 

convergence iterations, which ensures quadratic convergence (see Van Zijl20). 
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Tension cut-off  

 

The yield function for the tension cut-off (criterion number 2 of the interface model) is, 

2 tf                                      (14.50) 

where,
t is the tensile or brick–mortar bond strength. The strength is assumed to soften 

exponentially. 

2
t

I
f

f

G

t tf e





                                  (14.51) 

 

tf is the bond strength, and
I

fG is the Mode-I fracture energy. The softening is governed by a 

strain softening hypothesis. 

2 | |pu                                   (14.52) 

Upon consideration of an associated flow rule, 

 

2
2p

f



  


ε
σ

                               (14.53) 

reduces to 

2 2                                     (14.54) 

Compression cap  

 

The yield function for the compression cap, here referred to as criterion number 3 (with 1 being 

the shear mode), is 
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2 2 2

3 s cf C                                  (14.55) 

sC is a parameter controlling the shear stress contribution to failure, and
c is the compressive 

strength. The latter is assumed to evolve according to the strain hardening hypothesis. 

 

3

T

p p   ε ε                              (14.56) 

Upon consideration of an associated flow rule, 

 

3
3p

f





  


ε                               (14.57) 

becomes 

 
22

3 32 sC                              (14.58) 

 

The yield surface hardens, as described by a parabolic hardening rule, followed by 

parabolic/exponential softening (Fig. 14-18). The peak strength ,c xf is reached at the plastic 

strain p . Subsequently, the softening branch is entered, governed by the fracture energy
cf

G .  
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For practical reasons, all stress values in Fig. 14.18 are related to the peak strengths 
cf  as 

follows: 1

3i cf  , 1

2m cf   and 1

7r cf  . The three regions of this hardening–softening 

rule are given by, 

   

   

   
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3 3
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c m c

m p

m c m
r m r

m p m r

f

f f

f

 
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 

 
  

 

  
    

   

   

 
    

  

    
            

             (14.59) 

 

 

Corners  

 

At each of the intersections of the Coulomb friction criterion with the tension cut-off and the 

compression cap, the plastic strain increment is given by, 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 

1
1

i
p i

g g
  

 

 
    

 
                         (14.60) 

 

The subscript 1 refers to the shear criterion, and i refers to tension cut-off (i = 2) and to the 

compression cap (i = 3). Lourenço21 describes this procedure in detail. The corners are treated 

consistently. In both the shear/tension corner and the shear/compression corner, the stress 

corrections can be written in a standard predictor–corrector fashion and solved for, together with 

the two plastic strain increments 
1  or

i , by a Newton–Raphson iterative scheme. Also 

consistent tangent moduli here are employed for the global convergence iterations to ensure 

quadratic convergence. 

 

  

 

The two-dimensional interface model is extended to a three-dimension (see Van Zijl20), which 

enables the description of delamination (tension cut-off) and relative shear-slipping of two planes 

(Coulomb friction). No three-dimensional compression cap is implemented in MIDAS. Now the 

generalized stress and strain vectors are, 

s

t







 
 

  
 
 

σ  ;   

u

v

w

 
 

  
 
 

ε                        (14.61) 

 

Here, the shear stresses 
s and

t act in the local plane of the interface; v and w are the relative 

shearing displacements in the interface plane; and   and u are the stress and relative 

displacement respectively normal to the plane. The stiffness matrix is defined as, 

21 Lourenço, P. B. Computational Strategies for Masonry Structures. PhD thesis, Delft University of Technology, 1996.
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n s tdiag k k k   D                        (14.62) 

 

Fig. 14-19 shows the three-dimensional interface material law.  

 

 

 

Apart from the added stress and strain components, the two-dimensional tension criterion 
2f  of 

(14.50) remains unchanged. For the Coulomb friction part, the yield function becomes, 

 

2 2

s tf c                                 (14.63) 

As for the two-dimensional case, adhesion softening and friction softening are modeled as 

described by (14-38) and (14-39). A non-associated plastic potential is chosen, giving the flow 

rule. 
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 
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

 

 
 
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 

  
        

 
 
  

pε
σ

                       (14.63) 

 

The mobilized dilatancy  is defined as before by (14.48). However, now the strain softening is 

governed by the equivalent shear displacement. 

 

   
2 2

p pv w                               (14.64) 
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If a structure undergoes large deformation, the geometrical shape of the structure will change. As 

a result, the relationship between strain and displacement may no longer remain linear. Fig. 15-

(1)-A shows a structure in its equilibrium position. This structure is deformed by a load [a plumb 

bob] (Fig.15-(1)-B). At this point, the load and deflection interaction becomes nonlinear. 

 

 

 

Since the geometric shape of the structure changes while being in the process of deformation, 

geometric nonlinear analysis assumes that the shape of the structure before deformation (initial 

configuration) differs from that after deformation. Also assumed here is that strains and rotations 

are not small. Accordingly, the stiffness matrix  K becomes a function of displacements  u  in 

geometric nonlinear analysis.   

 

Generally, the formulations used in geometric nonlinear analysis include the Total Lagrangian 

formulation (TL) and the Updated Lagrangian formulation (UL). The formulations for both types 

are essentially the same, except that they have different ways to express the strains and stresses. 

The stresses and strains used in TL are the second Piola-Kirchhoff stress and the Green-

Lagrangian strain respectively. The stresses and strains used in UL are the Cauchy stress and the 

incremental linear Eulerian strain. The stresses and strains in TL and UL represent the shapes 

prior to deformation and after deformation respectively. In case of one dimensional analysis for 
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example, the second Piola-Kirchhoff stress represents the relationship of force and area before 

deformation  0/F A , whereas the Cauchy stress represents the relationship of force and area after 

deformation  /F A .   

 

Fig. 15-(2) shows the state of a body being deformed from its initial state (prior to deformation) at 

time=0 to its current state (after deformation) at time=t. 
0 and   represent the initial state 

and the current state respectively. X represents the spatial coordinate at the initial state, and 

x represents the spatial coordinate after the passage of time, t . 

Ω

Ω

0

X

x

u

ø (X, t)

Г

Г

0

x, X

y, Y

 

 

The Green-Lagrangian strain is defined using the coordinates of undeformed configuration, which 

is given by,  

   

 

, , , ,

1 1

2 2

T

ij i j j i k i k jor E u u u u    

  
   
  

E F F I

X ux u
F I

X X X

   (15.1) 

where, 

ijor EE : Green-Lagrangian strain 

F      : Deformation gradient  

time=0 

time=t 
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F links the undeformed shape of the body to the deformed shape. 

 

In case of a one dimensional structure, Eq.(15.1) can be written as,  

2 2

11 2

1

2

L L
E

L


      (15.2) 

In Eq. (15.2), L  represents the element length prior to deformation, and L represents the 

element length after deformation. If the deformation in Eq.(15.2) is extremely small, the Green-

Lagrangian strain can be expressed in the context of small (linear) strain as,  

 

   2

11 2

1 1 2 1

2 2 2

L L L L L L L L L L L L L
E

L L L L L L

L L

L

        
          

   




 (15.3) 

 

In order to examine the meaning of the second Piola-Kirchhoff stress in a general three 

dimensional continuum, we will induce the relationship with the Cauchy stress. The fundamental 

laws of thermodynamics state that the amount of energy produced by the Cauchy stress or the 

second Piola-Kirchhoff stress, whichever is used, is the same. Therefore, the virtual work can be 

written as, 

  

0 0: : : , det( )r dV dV J dV J       S E σ ε σ ε F              (15.4) 

 

where, 

S  : Second Piola-Kirchhoff stress 

σ  : Cauchy stress 

ε  : Incremental linear Eulerian strain,  
1

, ,
2

i j j iu u     

J   : The Jacobian determinant 

 

First, if the Green-Lagrangian strain and the deformation gradient are differentiated, each of them 
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is expressed as,  

 
1

2

T T   E F F F F       (15.5) 

  


   
  

  

u u x u
F F

x xX X
    (15.6) 

Substituting Eq. (15.6) into Eq.(15.5) results in Eq. (15.7).  

1 1

2 2

T T
T T T   

 
          
                       

u u u u
E F F F F F F F εF

x x x x
 (15.7) 

Substituting Eq.(15.7) into Eq.(15.4), the virtual work can be rewritten as,  

 0 0 0 0: : : :T Tr dV dV dV J dV         S E S F εF FSF ε σ ε  (15.8) 

Now, the relationship between the Cauchy stress and the second Piola-Kirchhoff stress can be 

expressed as,          

1 T

J
σ FSF ,   1 TJ  S F σF     (15.9) 

At time t t , the virtual work theorem can be expressed in terms of the second Piola-Kirchhoff 

stress and the Green-Lagrange strain as Eq. (15.10).  

0

t t t t t t

ij
ij

r S E dV         (15.10) 

 
1

, , , , , , , , , ,
2

t t t

ij ij ij

t t t

ij ij ij

t t t t

ij i j j i k i k j k i k j k i k j k j k i

S S S

E E E

E u u u u u u u u u u      







  

  

       

 (15.11) 

where, r is virtual work caused by external forces. 

 

Substituting Eq.(15.11) into Eq.(15.10), we obtain,  

0 0 0

t t t t

ij ij ij ij ij ijS δe dV S δη dV r S δe dV        (15.12) 
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where, 

1
( , , , , , , )

2

t t

ij i j j i k i k j k i k jδe δu δu u δu δu u      : Linear term 

1
( , , , , )

2
ij k i k j k j k iδ δu u δu u       : Nonlinear term 

ijS is expanded by using the Taylor series as follows: 

 
t

ijt t t t t

ij ij ij ij kl ijt

kl

S
S S S S E highorder S

E


 

        
  

             (15.13) 

 

Substituting Eq. (15.13) into the first term of Eq. (15.12) and ignoring the second order and the 

higher order terms of klE
, the first term becomes a linearized equation as Eq. (15.14). 

 

 

0 0 0

1
, , , , , ,

2

t

ij

ij ij kl ij ijkl kl ijt

kl

t t

ij ij i j j i k i k j k i k j

S
S e dV E e dV D E e dV

E

E e u u u u u u

  
 

     
  

        

  
            (15.14) 

 

Also, using the property of t t

ij jiS S , the second term of Eq. (15.12) can be arranged as, 

0 0: ( ) ,t t T i
ij ij ij

j

u
S δη dV dV L

X



  

  S L L               (15.15) 

 

From the right side of Eq. (15.12), each term can be expressed as Eq. (15.16). 

 

0 0 int:

t t T t t

ext

t t T t

ij ij

r

S δe dV dV



 

 

  

u f

S e u f
             (15.16) 

where, 

1 1 1 2 2 2

T

N N Nu v w u v w u v w            u   

Accordingly, the right side of Eq. (15.12) is arranged using Eq. (15.16) to Eq. (15.17). 

0 int: ( )t t t T t t t

extr dV     S e u f f             (15.17) 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

Substituting Eq.(15.14-15, 17) into Eq.(15.12) results in Eq. (15.18). The first term of the left side 

in Eq. (15.18) represents the virtual work done by linear strains, and the second term represents 

the virtual work done by nonlinear strains.  

0 0 int: ( )T t T T t t t

extdV dV        e D e S L L u f f            (15.18) 

Eq. (15.18) is expressed as Eq. (15.19). The stiffness matrices, e

LK  and e

NLK  are determined 

by the element shape functions, which are detailed in the subsequent sections. 

          int

t e t e t t t

L NL ext

   K K u f f              (15.19) 
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A truss element has translational displacements, u , v  and w in the Element Coordinate 

System, which are expressed using the shape function,
iN , as follows: 

1 1 1

, ,
N N N

i i i i i i

i i i

u N u v N v w N w
  

                  (15.20) 

 

The stress and strain used for truss elements can be expressed as, 

         ,xx xxS E S E               (15.21) 

                where, x : Element Coordinate System 

The linear term, e  of virtual stains in Eq. (15.19) can be written as, 

          , , , , , , ,

t t t

x x x x x x xu u u v v w w       e             (15.22) 

 

Eq. (15.22) is expressed in terms of the product of the virtual displacement term, u  and the 

matrix, 
LB . 

       
0 1L L L     e B u B u B u               (15.23) 

 

The linear term of incremental strains can also be expressed in a similar way. 

0 1L L L      e B u B u B u               (15.24) 

 From Eq. (15.23) and Eq. (15.24), the displacement-strain relationship matrix is written as, 

 0 1, 2,0 0 0 0L x xN NB               (15.25) 

         1 , 1, , 1, , 1, , 2, , 2, , 2,

t t t t t t

L x x x x x x x x x x x xu N v N w N u N v N w NB         (15.26) 

 

L , which composes the nonlinear term of the virtual strain in Eq. (15.19), is written as, 

         , , ,

T

x x xu v w   L      (15.27) 
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Eq. (15.27) is expressed by the product of the virtual displacement term, u  and the matrix, 

NLB . 

        
NL L B u               (15.28) 

 

L  also can be expressed in a similar way. 

        
NL  L B u       (15.29) 

where,  

        

1, 2,

1, 2,

1, 2,

0 0 0 0

0 0 0 0

0 0 0 0

x x

NL x x

x x

N N

N N

N N

 
 

  
 
 

B   (15.30) 

 

Substituting Eq. (15.23-24) and Eq. (15.28-29) into Eq. (15.19), we can obtain a linearized 

equilibrium equation. 

int( ) ( )T t e t e T t t e t e

L NL ext     u K K u u f f    (15.31) 

Each term of Eq. (15.31) is as follows: 

int

ˆ

e

e

e

t e T

L L L
L

t e t T t t

NL NL NL
L

t e t T t

L
L

A dL

A dL

A dL













K B DB

K B S B

f B S

    (15.32) 

where,  

A : section area 

The matrix, ˆt
S  composed of stress components is as follows:  

ˆ

t

t t t t

xx

t

S

 
 

     
 
 

S 0 0

S 0 S 0 S

0 0 S

(15.33) 

As a result of the truss element analysis, nodal stresses and element forces exist similarly to linear 

analysis. In addition to the nodal results, stresses at the integral points can be tabulated.  
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Plane stress elements, which consider geometric nonlinearity, consist of isoparametric elements of 

3, 4, 6 and 8 nodes. Each element uses a shape function identical to that of the linear element, and 

incompatible modes are not used. A plane stress element has translational displacements, u and 

v  in the Element Coordinate System, which are expressed using the shape function,
iN , as 

follows: 

1 1

,
N N

i i i i

i i

u N u v N v
 

   (15.34) 

 

The stresses and strains used in plane stress elements can be expressed as, 

          ,
T T

xx yy xy xx yy xyS S S E E E S E    (15.35) 

 

The linear term, e  of virtual strains in Eq. (15.19) can be written as, 

, , , , ,

, , , , ,

, , , , , , , , , ,

t t

x x x x x

t t

y y y y y

t t t t

y x x y x y y x y x

u u u v v

v u u v v

u v u u v v u u v v

  

   

     

   
  

     
         

e  (15.36) 

Eq. (15.36) is expressed in terms of the product of the virtual displacement term, u  and the 

matrix, 
LB . 

       
0 1L L L     e B u B u B u     (15.37) 

 

The linear term of incremental strains can also be expressed in a similar way. 

       
0 1L L L      e B u B u B u     (15.38) 

 

From Eq. (15.37) and Eq. (15.38), the displacement-strain relationship matrix is written as, 

1, ,

0 1, ,

1, 1, , ,

0 0

0 0

x N x

L y N y

y x N y N x

N N

N N

N N N N

 
 

  
 
 

B







   (15.39) 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 

, 1, , 1,

1 , 1, , 1,

, 1, , 1, , 1, , 1,

, , , ,

, , , ,

, , , , , , , ,

( ) ( )

( ) ( )

t t

x x x x

t t

L y y y y

t t t t

x y y x x y y x

t t

x n x x n x

t t

y n yy y n y

t t t t

x n y y n x x n y y n x

u N v N

u N v N

u N u N v N v N

u N v N

u N v N

u N u N v N v N




 
  




  

B






  (15.40) 

 

L , which composes the nonlinear term of the virtual strain in Eq. (15.19), is written as, 

         , , , ,

T

x y x yu u v v    L          (15.41) 

 

Eq. (15.41) is expressed by the product of the virtual displacement term, u  and the matrix, 

NLB . 

        
NL L B u      (15.42) 

 

L  also can be expressed in a similar way. 

        
NL  L B u      (15.43) 

 

where,  

1, ,

1, ,

1, ,

1, ,

0 0

0 0

0 0

0 0

x N x

y N y

NL

x N x

y N y

N N

N N

N N

N N

 
 
 
 
 
  

B









   (15.44) 

 

Substituting Eq. (15.37-38) and Eq. (15.42-43) into Eq. (15.19), we can obtain a linearized 

equilibrium equation. 

 

       int( ) ( )T t e t e T t t e t e

L NL ext     u K K u u f f    (15.45) 

 

Each term of Eq. (15.45) is as follows: 
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int

ˆ

e

e

e

t e T

L L L
A

t e t T t t

NL NL NL
A

t e t T t

L
A

t dA

t dA

t dA













K B DB

K B S B

f B S

    (15.46) 

where, 

t : thickness 

 

The matrix, ˆt
S  composed of stress components is as follows: 

ˆ
t tt

xx xyt t

t tt
xy yy

S S

S S

  
    

    

S 0
S S

0 S
                               (15.47) 

 

As a result of the plane stress element analysis, nodal stresses and strains exist similarly to linear 

analysis. In addition to the nodal results, stresses and strains at the integral points can be tabulated. 

The order of integration is as follows: 

 3-node triangle    : 1 point Gauss integration 

 4-node quadrilateral: 4 point Gauss integration 

 6-node triangle    : 3 point Gauss integration 

 8-node quadrilateral: 9 point Gauss integration 
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Plate elements, which consider geometric nonlinearity, use a “degenerated plate approach”. Plate 

elements can consider in-plane deformation of the plane stress state and out-of-plane deformation 

consisting of flexure and shear. Plate elements reflecting geometric nonlinearity do not consider the 

drilling degree of freedom. They consider the shear deformation based on the Mindlin plate theory. 

Similar to the linear elements, the element types include 3, 4, 6 and 8 node elements. 

 

Although tensile stresses in the thickness direction are generally ignored in plate elements, all the 

stress and strain components are considered in the process of formulation. 

   ,
T T

xx yy zz xy yz zx xx yy zz xy yz zxS S S S S S E E E E E E S E  (15.48) 

 

The translation displacement at a position in an element can be separately expressed in terms of the 

translational displacement and rotation of the neutral plane. 

 

         
0 U u t                                 (15.49)  

               where, the vector, t  represents the effect of rotation. 

  ( )
2

t
 t T T                                 (15.50) 

               Here, 

T : deformed unit shell normal vector 

T : undeformed unit shell normal vector 

 

The linear term, e  of virtual stains in Eq. (15.19) can be written as, 
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0, ,

0, ,

0, ,

0, , 0, ,

0, , 0, ,

0, , 0, ,

0, , 0, ,

0, , 0, ,

0, ,

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) (

x x x

y y y

z z z

y x y x y x

z y z y z y

x z x z x z

T t t

x x x x

T t t

y y y y

T t

z z

u t

v t

w t

u t v t

v t w t

w t u t








 

 

 







 
 


 
  

 
   

   
 

    

 

 




e

u t u t

u t u t

u t u0, ,

0, , 0, , 0, , 0, ,

0, , 0, , 0, , 0, ,

0, , 0, , 0, , 0, ,

)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t

z z

T t t T t t

x x y y y y x x

T t t T t t

y y z z z z y y

T t t T t t

z z x x x x z z

 

 

 

 
 
 
  
 

     
     
 

      

t

u t u t u t u t

u t u t u t u t

u t u t u t u t

 (15.51) 

 

L , which composes the nonlinear term of the virtual strain in Eq. (15.19), is written as, 

 

0, ,

0, ,

0, ,

0, ,

0, ,

0, ,

0, ,

0, ,

0, ,

( )

( )

( )

( )

( )

( )

( )

( )

( )

x x x

y x y

z x z

x y x

y y y

z y z

x z x

y z y

z z z

u t

u t

u t

v t

v t

v t

w t

w t

w t



















 
 


 
 
 

 
 

  
 
 

 
 

 
  

L                    (15.52) 

 

The matrices 
LB and

NLB , which are required for real calculation, are not explained in this 

section. For the calculation of the element stiffness or forces, the stresses and strains in Eq. 

(15.48) are transformed into the coordinate system in contact with the element’s neutral plane. 

The method of presenting the rotational displacement and the characteristics of the elements of 

different numbers of nodes are explained below. 
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T

t

U

u

x—
—
X

O (Ref. Frame)

0

 

 

All the 3 translational displacements and 3 rotational displacements are considered in the global 

coordinate system for a flat plate having 3 nodes or 4 nodes. However, the components 

perpendicular to the vector in the thickness direction in incremental rotation displacements are 

excluded through the process of orthogonalization.  

 

 
T

i i i i Xi Yi Ziu v w   u       (15.53) 

 

The 4-node plate element uses the Lagrangian shape function. The vector in the thickness 

direction deformed by finite rotation is calculated by accumulating the rotational matrix such as 

T RRT . The increment of rotational stiffness, R is written as, 

2

sin 1 cos
( ) ( ) ( )I

 
   

 


  R S S S      (15.54) 

where, 

( )S : skew symmetric matrix 

 

Shear strains are calculated from the ANS (assumed natural strain) at the 4 sides as in Fig. 15-(4), 

and the locking phenomenon is prevented.   
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1 1
(1 ) (0, 1) (1 ) (0,1)

2 2
               (15.55) 

1 1
(1 ) ( 1,0) (1 ) (1,0)

2 2
x x             (15.56) 

z

z

 

 

 

 

      
   

      
P         (15.57) 

where, 

P : coordinate transform matrix 

 

4

3

1 2

γ

γ

ηζ

γ
ηζ

ξζ

γ
ξζ

 

 

The calculation of the 3-node element uses the degenerated method, which makes the 4th node of 

the 4-node element to have the same coordinates as the 3rd node. 

 

Curved plate elements consisted of 6 nodes or 8 nodes have 3 translational displacements and the 

rotations about the two in-plane directions, 
1iV and

2iV  defined at a node in the global 

coordinate system. 
1iV and

2iV are defined in the formulation of linear elements. 

 1 2

T

i i i i i iu v w  u        (15.58) 
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A curved plate uses the Lagrangian shape function. The vector in the thickness direction deformed 

by finite rotation is calculated by accumulating the rotational matrix in the same way as for a flat 

plate element. Considering only the components in the
1iV and

2iV directions among the 

incremental rotation displacements, the effect of orthogonalization is implicitly obtained. 

 

The analysis output of geometric nonlinear plate elements includes nodal stresses/strains and 

element internal forces as for the linear analysis. In addition, stresses and strains at Gauss points 

can be also tabulated. Stresses and strains are calculated at two points across the thickness in the z 

axis direction. The basic locations are at the top ( / 2z t ) and the bottom ( / 2z t  ) on the 

basis of the thickness associated with in-plane behavior. The plate elements, which consider 

geometric nonlinearity, carry out three point Simpson integration in the thickness direction, and 

the order of integration for the area is as follows: 

 

 3-node triangle    : 1 point Gauss integration 

 4-node quadrilateral: 4 point Gauss integration 

 6-node triangle    : 3 point Gauss integration 

 8-node quadrilateral : 4 point Gauss integration 
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Plane strain elements, which consider geometric nonlinearity, consist of isoparametric elements of 

3, 4, 6 and 8 nodes. Each element uses a shape function identical to that of the linear element, and 

incompatible modes are not used. A plane strain element has translational displacements, u and 

v  in the Element Coordinate System. The process of developing formulation is identical to that 

for plane stress elements. The finally linearized equilibrium equation for plain stress elements is 

derived as, 

int( ) ( )T t e t e T t t e t e

L NL ext     u K K u u f f    (15.59) 

Except for the matrix, D , which defines the relationship of stress and strain, each term of Eq. 

(15.59) is identical to that of plane stress elements. The analysis output of geometric nonlinear 

plane strain elements includes nodal stresses and strains as for the linear analysis. In addition, 

stresses and strains at Gauss points can be also tabulated. The order of integration is as follows: 

 

 3-node triangle: 1 point Gauss integration 

 4-node quadrilateral: 4 point Gauss integration 

 6-node triangle: 3 point Gauss integration 

 8-node quadrilateral: 9 point Gauss integration 
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Axisymmetric elements, which consider geometric nonlinearity, consist of isoparametric elements 

of 3, 4, 6 and 8 nodes. Each element uses a shape function identical to that of the linear element. 

An axisymmetric element has translational displacements, u and v  in the Element Coordinate 

System, which are expressed using the shape function,
iN , as follows: 

1 1

,
N N

i i i i

i i

u N u v N v
 

   (15.60) 

The stresses and strains used in axisymmetric elements can be expressed as, 

   ,
T T

xx yy xy zz xx yy xy zzS S S S E E E E S E   (15.61) 

 

The linear term, e  of virtual strains in Eq. (15.19) can be written as, 

, , , , ,

, , , , ,

, , , , , , , , , ,

2

t t

x x x x x

t t

y y y y y

t t t t

y x x y x y y x y x

t

u u u v v

v u u v v

u v u u v v u u v v

u u u

r r

  

  

      

 

  
  

     
       
   
   
      

e  (15.62) 

Eq. (15.62) is expressed in terms of the product of the virtual displacement term, u  and the 

matrix, 
LB . 

0 1L L L     e B u B u B u     (15.63) 

The linear term of incremental strains can also be expressed in a similar way. 

0 1L L L      e B u B u B u     (15.64) 

From Eq. (15.63) and Eq. (15.64), the displacement-strain relationship matrix is written as, 
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1, ,

1, ,

0 1, 1, , ,

1

0 0

0 0

0 0

x N x

y N y

L y x N y N x

N

N N

N N

N N N N

N N

r r

 
 
 

  
 
 
  

B









   (15.65) 

 

, 1, , 1,

, 1, , 1,

1 , 1, , 1, , 1, , 1,

1

2

, , , ,

, , , ,

, , , , , , , ,

2

( ) ( )

0

( ) ( )

0

t t

x x x x

t t

y y y y

t t t t
L x y y x x y y x

t

t t

x N x x N x

t t

y N y y N y

t t t t

x N y y N x x N y y N x

t N

u N v N

u N v N

u N u N v N v N

N
u

r

u N v N

u N v N

u N u N v N v N

N
u

r





   







 




B








  (15.66) 

L , which composes the nonlinear term of the virtual strain in Eq. (15.19), is written as, 

, , , ,

T

x y x y

u
u u v v

r


    

 
  
 

L                (15.67) 

Eq. (15.67) is expressed by the product of the virtual displacement term, u  and the matrix, 

NLB . 

NL L B u      (15.68) 

L  also can be expressed in a similar way. 

       
NL  L B u               (15.69) 

 

where,  
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1, ,

1, ,

1, ,

1, ,

1

0 0

0 0

0 0

0 0

0 0

x N x

y N y

x N x
NL

y N y

N

N N

N N

N N

N N

N N

r r

 
 
 
 

  
 
 
 
  

B











   (15.70) 

Substituting Eq. (15.63-64) and Eq. (15.68-69) into Eq. (15.19), we can obtain a linearized 

equilibrium equation. 

int( ) ( )T t e t e T t t e t e

L NL ext     u K K u u f f    (15.71) 

Each term of Eq. (15.71) is as follows: 

int

ˆ

e

e

e

t e T

L L L
A

t e t T t t

NL NL NL
A

t e t T t

L
A

r dA

r dA

r dA













K B DB

K B S B

f B S

    (15.72) 

where,  

0

ˆ 0

0 0

t t t t

xx xy xx xy

t t t t t t

xy yy xy yy

t t

zz

S S S S

S S S S

S

   
   

    
   
   

0

S 0 S

0 0 S

                     (15.73) 

 

As a result of the axisymmetric element analysis, nodal stresses and strains exist similarly to 

linear analysis. In addition to the nodal results, stresses and strains at the integral points can be 

tabulated. 

The order of integration is as follows: 

 

 3-node triangle    : 1 point Gauss integration 

 4-node quadrilateral: 4 point Gauss integration 

 6-node triangle    : 3 point Gauss integration 

 8-node quadrilateral: 9 point Gauss integration 
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Solid elements, which consider geometric nonlinearity, consist of isoparametric elements of 4, 6, 

8, 10, 15 and 20 nodes. Each element uses a shape function identical to that of the linear element, 

and incompatible modes are not used. A solid element has translational displacements, u , v and  

w in the Element Coordinate System, which are expressed using the shape function,
iN , as 

follows: 

 

1 1 1

, ,
N N N

i i i i i i

i i i

u N u v N v w N w
  

     (15.74) 

 

The stresses and strains used in solid elements can be expressed as, 

   ,
T T

xx yy zz xy yz zx xx yy zz xy yz zxS S S S S S E E E E E E S E  (15.75) 

The linear term, e  of virtual stains in Eq. (15.19) can be written as, 

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , , , , , , , , ,
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, ,

t t t
x x x x x x x
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z z
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v w u

w u
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  

e

, , , , , , , , , , ,

, , , , , , , , , , , ,
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 
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 
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(15.76) 

Eq. (15.76) is expressed in terms of the product of the virtual displacement term, u  and the 

matrix, 
LB . 

0 1L L L     e B u B u B u     (15.77) 

The linear term of incremental strains can also be expressed in a similar way. 
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0 1L L L      e B u B u B u     (15.78) 

From Eq. (15.77) and Eq. (15.78), the displacement-strain relationship matrix is written as, 

 

1, 2, ,

1, ,

1, ,
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0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0 0

0 0

x x N x

y N y

z N z

L

y x y N y N x

z y N z N y

z x z N z N x

N N N

N N

N N

N N N N N

N N N N

N N N N N

 
 
 
 
 
 
 
 
  

B













  (15.79) 
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          (15.80) 

L , which composes the nonlinear term of the virtual strain in Eq. (15.19), is written as, 

 , , , , , , , , ,

T

x y z x y z x y zu u u v v v w w w         L  (15.81) 

Eq. (15.81) is expressed by the product of the virtual displacement term, u  and the matrix, 

NLB . 

NL L B u                   (15.82) 

L  also can be expressed in a similar way. 

NL  L B u                        (15.83) 

where,  
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 

1 2

1

1

, , ,
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

   (15.84) 

 

Substituting Eq. (15.77-78) and Eq. (15.82-83) into Eq. (15.19), we can obtain a linearized 

equilibrium equation. 

int( ) ( )T t e t e T t t e t e

L NL ext     u K K u u f f    (15.85) 

Each term of Eq. (15.85) is as follows: 

int
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    (15.86) 

where,  
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                   (15.87) 

 

As a result of the solid element analysis, nodal stresses and strains exist similarly to linear 

analysis. In addition to the nodal results, stresses and strains at the integral points can be tabulated. 

The order of integration is as follows: 

 4-node tetrahedron: 1 point Gauss integration 

 6-node pentahedron: 6 point Gauss integration 

 8-node hexahedron: 8 point Gauss integration 

 10-node tetrahedron: 4 point Gauss integration 

 15-node pentahedron: 9 point Gauss integration 

 20-node hexahedron: 27 point gauss integration 
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In nonlinear finite element analysis, the relation between a force vector and displacement vector is 

no longer linear. For several reasons, for instance in case of material nonlinearity, the relation 

becomes nonlinear, and the displacements often depend on the displacements at earlier stages, e.g. 

in case of plastic material behavior. Just as with a linear analysis, we wish to calculate a 

displacement vector that equilibrates the internal and external forces. In the linear case, the 

solution vector can be calculated right away, but not in the nonlinear case. To determine the state 

of equilibrium, we not only make the problems discrete in space (with finite elements), but also in 

time (with increments). To achieve equilibrium at the end of each increment, we can use an 

iterative solution algorithm. The combination of both is called an incremental-iterative solution 

procedure. 

 

In this chapter, we will consider a vector of displacement increments that must yield an 

equilibrium condition between internal and external forces, and a stiffness matrix relating internal 

forces to incremental displacements. In reality, the physical meaning of items in the 

‘displacement’ vector can also be e.g. a velocity or a Lagrange multiplier. In this chapter, the 

physical meaning of what we refer to as the displacement and force vectors and the stiffness 

matrix is irrelevant. Most often, it represents a continuous system that is approximated using the 

Principle of Virtual Work, Galerkin discretization or another method. A good starting point is to 

strive for an equilibrium state in which the internal force vector equals the external force vector, 

satisfying boundary conditions. 

 
int extf f       (16.1) 

 0

i iu u   (i Prescribed)   (16.2) 

 

In nonlinear analysis, the internal force vector usually depends nonlinearly on the displacements 

(e.g. nonlinear elasticity). It can also depend on the displacements in the history. This is e.g. the 
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case if the material is ‘path dependent’ such as in plasticity and if large displacements facilitate 

multiple equilibrium solutions. The external force vector can also be displacement dependent. 

This is the case in geometrical nonlinear analysis, if the magnitude or the direction of the loading 

depends on the displacements such as with pressure on a wall. We can now write, 

 

 ( ) ( )int exthistory f u f u,     (16.2) 

The system described above is already discretized in space. To enable a numerical solution, a time 

discretization is performed as well. Here ‘time’ can have a real physical meaning e.g. in a creep 

analysis or it can be a pseudo-time, only to describe a sequence of situations. Starting at time t 

with an approximated solution
t
u , a solution 

t+
u is searched for which (16.2) holds. Within 

the time-increment, only the displacements at start and end are known. The internal force vector, 

which may be path dependent, is calculated from the situation at time t, the time increment t  

and the displacement increment u . The external forces only depend on the current geometry. If 

we consider only one increment, the time increment and the situation at the start of the increment 

(history) are fixed. The equilibrium equation within the increment then only depends on u . We 

can write the nonlinear problem as: find u  such that 

t t t   u u u      (16.3) 

and, with g as the out-of-balance force vector (the residual forces). 

 

int( ) ( ) =ext( )=   u f u f u 0g     (16.3) 

 

A purely incremental method usually leads to inaccurate solutions in nonlinear analysis, unless 

very small step sizes are used. In an iterative process, the errors that occur can be reduced 

successively. This in fact realizes an implicit procedure. The allowable step size is usually higher 
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than in case of a process without iterations (e.g. an explicit process). The general procedure is the 

same for all iteration processes (Fig. 16-1). In all procedures, the total displacement increment 

u  is adapted iteratively by iterative increments u  until equilibrium is reached, up to a 

prescribed tolerance. Indicating the iteration number with a right subscript, the incremental 

displacements at iteration i + 1 are calculated from 

 
1 1i i i    u u u      (16.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference between several procedures is the way in which u  is determined. The iterative 

increments are calculated by use of a ‘stiffness matrix’ K that represents some kind of linearized 

form of the relation between the force vector and the displacement vector. The stiffness matrix 

used can be changed at each iteration. The matrix that is used in iteration i is called Ki. A direct 
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approach is to determine the iterative increments by, 

1

i i i u K g      (16.5) 

where, gi is the out-of-balance force vector at the start of iteration i. In this case, a linear set of 

equations are solved at each iteration. 

 

Next sections describe the methods that are available in MIDAS - the Initial stiffness method, the 

Newton-Raphson method, the Modified Newton-Raphson method, the Arc-length method and the 

Displacement control. 

 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

The initial stiffness method uses the stiffness matrix, calculated at the beginning of the analysis 

stage. And regardless of the load level, the stiffness matrix remains unchanged during the entire 

process of analysis. This method is used for those analyses, which tend to exhibit instability. 

Stable solutions are generally found, but relatively small increments result in slow convergence. 
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Within the class of Newton–Raphson methods, generally two subclasses are distinguished, the 

Regular and the Modified Newton–Raphson method. Both methods use Eq. (16.5) to determine 

the iterative increment of the displacement vector. In a Newton–Raphson method, the stiffness 

matrix Ki represents the tangential stiffness of the structure. 

 

i





K
u

g
      (16.6) 

The difference between the Regular and the Modified Newton–Raphson method is the point at 

which the stiffness matrix is evaluated. 

 

 

In the Regular Newton–Raphson iteration, the stiffness relation Eq. (16.6) is evaluated at each 

iteration (Fig. 16-3). This means that the prediction of Eq. (16.5) is based on the last known or 

predicted situation, even if this is not an equilibrium state. The Regular Newton–Raphson method 

yields a quadratic convergence characteristic, which means that the method converges to the final 

solution within only a few iterations. A disadvantage of the method is that the stiffness matrix has 

to be set up at each iteration and, if a direct solver is used to solve the linear set of equations, the 

time consuming decomposition of the matrix has to be performed every iteration as well. 

Moreover, the quadratic convergence is only guaranteed if a correct stiffness matrix is used and if 

the prediction is already in the neighborhood of the final solution. If the initial prediction is far 

from the final solution, the method easily fails to converge. In summary, the Regular Newton–

Raphson method usually needs only a few iterations, but each iteration is relatively time 

consuming. 



We Analyze and Design the Future 

Analysis and Algorithm Manual 
m

id
a

s
F

E
A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Modified Newton–Raphson method only evaluates the stiffness relation (16.6) at the start of 

the increment (Fig. 16-4). This means that the prediction is always based on a converged 

equilibrium state. Usually, Modified Newton–Raphson converges slower to equilibrium than 

Regular Newton– Raphson. However, for each iteration only the prediction of the iterative 

incremental displacements and the internal force vector has to be calculated. It is not necessary to 

set up a new stiffness matrix. If a direct solver for the linear set of equations is used, it is not 

necessary to perform the decomposition again; only the relatively fast substitution part will be 

needed. In summary, the Modified Newton– Raphson method usually needs more iterations, but 

every iteration is faster than that in Regular Newton–Raphson. 

 

In situations where Regular Newton–Raphson no longer converges, the Modified Newton–

Raphson process can sometimes still converge. Small variations of both processes are possible by 
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using the linear or previous stiffness for the first prediction and by setting up the current stiffness 

matrix after the first prediction. If unloading occurs, it can be advantageous to return to the linear 

stiffness, e.g. in a plasticity analysis. 
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In an ordinary iteration process, the predictions for the displacement increments can become very 

large. This is the case especially if the load–displacement curve is almost horizontal. If a fixed 

load increment is prescribed, this results in very large predictions for the displacements. The 

problem can be overcome with the use of an Arc-length method. Using the Arc-length method, the 

snap through behavior of Fig. (16-5a) can be analyzed, just as the displacement control could. 

However, it is possible to define a system of loads that could not be substituted by prescribed 

displacements. Moreover, the Arc-length method is also capable of passing snap-back behavior 

(Fig. 16-5b), where the displacement-control scheme fails.  

 

 

 

 

 

 

 

 

 

The Arc-length method constrains the norm of the incremental displacements to a prescribed 

value. This is done by simultaneously adapting the size of the increment. Note that the size is 

adapted within the iteration process and is not fixed at the moment the increment starts. For this 

purpose, we define the external force vector at the start of the increment as t

extf and the increment 

of the external force vector as ˆ
i f . The load factor

i multiplies a unit load f̂ and can be 

changed at each iteration. Substitution in (16.5) results in,  
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-1

i
ˆ( + )t

i i int int,i   u K f f f     (16.7) 

The solution
iu is now split in two parts. 

 

-1

i ( )I t

i int int,i  u K f f      and    
-1

i
ˆII

i u K f   (16.8) 

The total iterative increment is then derived from, 

I II

i i i i    u u u      (16.9) 

The load factor 
i  is still undefined and can now be used to constrain the incremental 

displacement vector. MIDAS offers a quadratic and a linearized constraint, leading to the 

Spherical Path Arc-length method (Crisfield1). 

 

 

In the spherical constraint, the constraint equation is, 

2T

i i l   u u      (16.10) 

where, l  is the required arc length. Substitution of (16.4) and (16.9) into (16.10) gives the value 

for  . 

2

2 2 1 3

1

4

2
i

a a a a

a


  
      (16.11) 

with 

 

1 Crisfield, M. A. Non-linear Finite Element Analysis of Solids and Structures, vol. 1: Essentials. John Wiley & Sons, 

1991. 
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1

2

2

3

( )

2( ) 2( )

2( ) ( ) ( )

II T II

i i

I T II T II

i i i

T I I T I T

i i i

a

a

a l

 

  

  



  

       

u u

u u u u

u u u u u u

  (16.12) 

 

Normally, two solutions for   fulfill (16.10), but if the discriminant 2

2 1 34 0a a a  , then MIDAS 

uses a linearized equivalent of the Spherical Path method as described by Forde and Stiemer2. To 

determine which of the two regular solutions should be used, the angle between the displacement 

increment vector of the previous iteration and the current iteration is calculated for both solutions. 

 

 
12 2

4 5

2

( )
cos( )

T IT T II
i 1 i 1 ii -1 i i 1 i

i

i -1 i

i

l l

a a

l

 
 





  


   
  

  






u u uu u u u

u u
 (16.13) 

where, 

 4

T I

i 1 i 1 ia     u u u  

5

T II

i 1 ia  u u      (16.14) 

If one of the solutions yields a negative cosine and the other yields a positive cosine, MIDAS chooses 

the solution with the positive cosine (acute angle). If both solutions yield acute angles, the solution 

closest to the linear solution 
3 2a a   is used.  

 

From the results of the Eq. (16.11), ,1i and ,2i , it may be written as, 

2

1 4 5 ,1

2

2 4 5 ,2

cos

cos

i

i

l a a

l a a

 

 

  

  
    (16.15) 

where, 

2 Forde, B. W. R., and Stiemer, S. F. Improved Arc-length Orthogonality methods for nonlinear Finite Element Analysis. 

Computers & Structures 27, 5 (1987), 625–630.
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 

 

 

2 2

,1 1 2

2 2

,1 ,2 1 2

2 2

,2 1 2

cos cos

cos cos

cos cos

i i

i i i

i i

l l

l l

l l

   

    

   

    



    


   

   (16.16) 

 

g = ∆λ f

i+1δλ f

f

eq

u

g = ∆λ f

∆l

i+1

i+1

i+1

i+1
K

eq

i i

i

ut

∆ui δu i+1

eq

∆λ f eq
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Fig. 16-7 shows two possible load-deflection curves involving limit load, snap-through and in 

some cases snap-back phenomena. Therefore, for each model, it is important to choose a stable 

scheme to obtain a correct equilibrium path. Among the different iterative methods, the 

displacement control method is considered in this section. 

    

In the Displacement Control method, the target displacement defines the incremental load factor. 

Load increment factor is written as, 

 I II

i i i iu u u          (16.17) 

The incremental load factor is defined through an iterative procedure at the initial load step. Initial 

incremental load factor coincide with the direction of displacement control at the controlled node. 

Because the initial incremental displacement and target displacement û coincide, Eq. (16.17) is 

written as, 

 1 1 1 1
ˆI IIu u u u          (16.18) 

At the first iteration, the residual force is assumed to be zero. As a results, 1 0Iu  , and the 

u u 

P P 
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initial load factor is expressed by, 

1 1 1
1

1 1 1

ˆ ˆI I

II II II

u u u u u

u u u

  


  

 
      1i    (16.19) 

û has a constant value during the iteration and
iu  1i  is zero.  

From Eq. (16.17) and the above assumption, the incremental load factor  1i i  is obtained 

by, 

I

i
i II

i

u

u





     1i      (16.20) 

Finally, the updated total displacement is obtained from Eq. (16.20) and Eq. (16.17). Note that if 

the incremental load factor becomes zero, the iterative procedure will be terminated. 
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The iteration process must be stopped if the results are satisfactory (Fig. 16-1). For this purpose, MIDAS 

offers several convergence norms. Besides stopping the iteration in case of convergence, the iteration 

process is also stopped if a specified maximum number of iterations has been reached, or if the iteration 

obviously leads to divergence. The detection of divergence is based on the same norms as the detection 

of convergence. Fig. 16-8 specifies the items used to set up the various norms. 

 

 

 

 

 

 

 

 

 

The force norm is the Euclidian norm of the out-of-balance force vector g . To check convergence, the 

force norm after the current iteration is checked against the norm of the initial unbalance
0g . 

 

Force norm ratio = 

T

i i

T

0 0

g g

g g
    (16.21) 

Because the reference force norm is known before the first prediction of displacements, the force norm 

ratio can be calculated directly after the first prediction, i = 1 in (16.21). This means that if the first 

prediction is correct (nearly linear behavior), the force norm can detect convergence right away and no 

unnecessary iterations have to be performed. 
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The displacement norm is the Euclidian norm of the iterative displacement increment. To check 

convergence, the displacement norm is checked against the norm of the displacement increments in the 

first prediction of the increment. 

 

Displacement norm ratio = 

T

i i

T

0 0

 

 

u u

u u
   (16.22) 

 

From Eq. (16.22), it is clear that the ratio of the displacement norm after the first prediction (iteration 0) 

equals 1 by definition. To check convergence, always one additional iteration is necessary. 

 

 

 

A third way to check convergence is the energy norm. This norm is composed of internal forces and 

relative displacements as indicated in Fig. 16-8 with
0E and

1E . To determine convergence, the 

energy ratio is calculated as,  

 

Energy norm ratio = 
( )

( )

T

i int,i+1 int,i

T

0 int,1 int,0

 

 

u f f

u f f
   (16.23) 

Note that here the internal force is used and not the out-of-balance force. As with the displacement norm, 

the energy norm also requires an additional iteration to detect convergence. 
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MIDAS provides an option to automatically switch from load/displacement control to arc-length 

control. This feature is activated when the equilibrium path is reached to the limit point.  

To measure the degree of nonlinearity, the current stiffness parameter k is introduced. This 

parameter measures the stiffness of the system with respect to the tangential predictor as follows: 

 

T

i i
i T

i i

k



 

g u

u u
     (16.24) 

The scaled current stiffness parameter is expressed by,  

 

1

s

k
C

k
       (16.25) 

where, k is the current value of the stiffness parameter, and
0k is the initial value of the stiffness 

parameter.   

 

During an iterative procedure within a load step, the scaled stiffness parameter is defined by,
sC . 

Accordingly, 
1sC and

sdC are defined as the initial and the current scaled stiffness parameters 

respectively. The automatic-switching function will be activated when the equilibrium path is 

getting closer to the limit point, and as a result, the current scaled stiffness parameter is converged 

towards zero. Therefore, the updated automatic-switching control parameter 
1sd sC C  will 

satisfy the user defined value for this ratio. 
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Solving linear simultaneous equations in a matrix form can be expressed by, 

Ku p,        (17.1) 

where K represents a stiffness matrix, and p represents external forces acting on the structure. 

The solution to the above equation is to find the displacement vector field, u .  

               

The equation (17.1) is used to analyze almost all structural problems including the linear system 

of equations, eigenvalue/ buckling problems, dynamic models and nonlinear problems. The 

solution schemes are largely classified into direct and iterative methods. MIDAS provides the 

following methods and corresponding options; 

 

Direct methods 

- Skyline 

- Multi-frontal (default) 

Iterative methods 

- CG (default): Pre-conditioner : ILUT (default), Jacobi 

- GMRES    : Pre-conditioner : ILUT (default), Jacobi 
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Two main steps are considered in the direct method. The first step is decomposition and the 

second step is Forward-Backward Substitution (FBS).  

A symmetric stiffness matrix, K is decomposed into, 

T LL u p   or  .T LDL u p        (17.2) 

Here, L is a lower-triangular matrix, and D is a diagonal matrix. In general, the decomposition 

method, which includes D , is required for a matrix, which is not positive definite. The 

decomposed matrix, K ( T LL  or T LDL ) is used to find solutions through the process of 

Forward-Backward Substitution. Substituting it into 
Tv L u  or

Tv DL u , can we then 

express it as, 

 

,Lv p                          (17.3) 

 

And the solutions to Lv p , that is v , can be obtained by the characteristics of the lower-

triangular matrix. Once v  is obtained, u  can be calculated using 
Tv L u or

Tv DL u . An 

important point for applying the direct method is to appropriately use the sparsity of the matrix. 

Typically, in the context of finite element analysis, the matrix K is a sparse matrix. Depending 

on how the sparsity is handled, the required memory allocation and analysis time can significantly 

vary.  

MIDAS provides a skyline solver, which uses a front matrix and a multi-frontal solver, which uses 

multi-front matrices. 
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The Skyline solver performs matrix decomposition using a single front matrix and uses the 

skyline type for saving the matrix. 

The stiffness matrix corresponding to the mesh shown in Fig. 17-(1) can be divided into three 

parts, 

11 21

21 22 32

32 33

.

T

T

 
 

  
 
 

K K 0

K K K K

0 K K

        (17.4) 

Assuming that K is decomposed in the order of 
1 2 3P P P  , the decomposition of 

1P  and 

the renewal of 
2P  as a result are as follows: 

11 11 11

21 11 21

*

22 21 21 22 22 22( ).

T

T

T T





  

K L L

L L K

K L L K L L

      (17.5) 

In the same way, 
2P  can be decomposed and

3P  can be renewed and decomposed. Note that the 

efficiency of calculation in sequential matrix decomposition with a single front matrix 

significantly depends on renumbering of the degrees of freedom. Fig. 17-(2) schematically shows 
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an efficient calculation sequence in a rectangular mesh. The algorithm for renumbering the 

degrees of freedom is based on the wavefront reduction method proposed by Sloan1. Forward 

substitution takes place in the same sequence as the matrix decomposition, while backward 

substitution is carried out in the reverse order.  

Multi-frontal solver is based on the matrix decomposition method2 in which multiple front 

matrices are simultaneously considered and calculated by saving the matrices by element units. 

Unlike the order of the matrix used in the Skyline solver for the mesh shown in Fig. 17-(1), it is 

arranged as Eq. (17.6). 

11 21

33 23

21 23 22

.

T

T

 
 

  
 
 

K 0 K

K 0 K K

K K K

        (17.6) 

When K is decomposed in the order of
1 3 2( , )P P P , it can be expressed as the Eq. (17.7) and 

1 S.W.Sloan, An Algorithm for Profile and WaveFront Reduction of Sparse Matrices, International Journal For Numerical 

Methods In Engineering, Vol. 23, 239-251, 1986 

2 J.H. Kim and S.J. Kim, A Multifrontal Solver Combined with Graph Partitioners, AIAA Journal, Vol. 38, 964-970, 

1999 
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Eq. (17.8). 

11 11 11

21 11 21

*

22 21 21 22 ,

T

T

T





 

K L L

L L K

K L L K

      (17.7) 

33 33 33

23 33 23

* **

22 23 23 22.

T

T

T





 

K L L

L L K

K L L K

      (17.8) 

Note that decomposition of matrices by using the multi-front method also requires renumbering 

the degrees of freedom. Fig. 17-(3) schematically shows the effective calculation sequence for 

decomposition of a rectangular mesh. A recursive bisection method is used as an algorithm to 

renumber the degrees of freedom. Forward substitution follows the same sequence as the matrix 

decomposition, while backward substitution is calculated in the reverse order. 
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The iterative method is used to find a value close to the exact solution to Eq. (17.1) by using the 

solution at the current step, 
iu and the residual value, (

i i r p Ku ). 

 

Calculation of 
1iu  is simply expressed as, 

1 ( )i i i i   u u ΓQ p Ku       (17.9) 

where, 
iΓ is a matrix operator determined by the type of iterative method, and Q  is a pre-

conditioner, which affects the convergence speed. The iterative process continues until the number 

of iterations reaches the maximum number of iteration or the convergence tolerance of a residual 

value ( )i i r p Ku is satisfied. MIDAS allows the user to set these parameters whose default 

values are as follows: 

 

Maximum number of iterations 

/ 4N  (if / 4 1000N  ), 1000 (if / 4 1000N  ) 

Convergence tolerance 

610i

r f      (17.10) 

MIDAS provides the CG3 (Conjugate Gradient) method for a symmetric matrix having positive 

signs and the GMRES4 (General Minimal Residual) method suitable for a general matrix. Both 

3 H.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Nat. Bur. Standards 

Vol. 49 409-436, 1952 

4 Y. Saad and M.H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear 

Systems. SIAM J. Sci. Stat. Comput. Vol. 7, 856-869, 1986 
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the CG method and the GMRES method set the solution searching direction, 
id  so that the 

residual value, 
ir  crosses at a right angle in the Krylov subspace  2

0 0 0, , ,...span r Kr K r . 

Accordingly, if the result is obtained without any numerical errors, the exact solution can be 

theoretically obtained after N iterations (the number of degrees of freedom of a structure). 

 

CG is a method, which finds a solution by setting the conjugated direction (
1i i i i  d r d ) as 

the search direction. CG has a characteristic to easily obtain  the orthogonality of residual values 

using the symmetry of the stiffness matrix, K . GMRES is a method, which executes the Gram-

Schmidt orthogonalization at each step of the iterative calculation to make the residual value, 
ir  

retain orthogonality in the Krylov subspace  2

0 0 0, , ,...span r Kr K r . As the amount of 

calculation increases with an increase in the number of iterations in the Gram-Schmidt 

orthogonalization, it incorporates a method, which restarts the Krylov subspace after an 

appropriate number of iterative calculations. 

Pre-conditioner plays an important role in increasing the convergence speed by obtaining 1
K  

and a similar matrix ( 1Q K ) with a small amount of calculations. This is similar to finding the 

exact solution through one iterative calculation using 1
K  in place of Q  in Eq. (17.9). In 

MIDAS, the ILUT5 (Incomplete LU decomposition with threshold) pre-conditioner and the 

Jacobi pre-conditioner can be used. The ILUT pre-conditioner uses the Incomplete LU 

decomposition in which the drop-tolerance has been applied to the fill-in generated from the 

matrix decomposition process. The Jacobi pre-conditioner method uses 1( )diag Q K  

considering only the diagonal terms of the matrix K . 

5 Y. Saad, ILUT: a Dual Threshold Incomplete ILU Factorization, Numerical Linear Algebra with Applications Vol. 1, 

387-402. 1994 
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There are cases where the solution to linear simultaneous equations is automatically determined 

by MIDAS depending on the type of analysis problems. 

 

Buckling analysis or dynamic analysis using the Lanczos’ method: Use multi-frontal solver. 

Dynamic analysis using the iterative method: Changed to multi-frontal solver. 

In case where constraint equations are included: Use multi-frontal solver. 

In case where the CG method is used, and non-symmetry stiffness occurs: Changed to GMRES 

method. 

 

The performance levels of different solution methods for solving linear simultaneous equations 

vary considerably depending on the types of analysis. It is thus important to select an appropriate 

solution method for each case. The characteristics and the performance level of each solution 

method are noted below. 

 

Direct method: It is stable irrespective of the matrix condition but requires a large memory space. 

If the system memory is insufficient, the program automatically uses the disk storage. 

- Skyline: Suitable to analyze one-dimensional structures 

- Multi-frontal: Suitable to analyze two- or three-dimensional structures 

Iterative method: Although a less memory is required, the calculation time can vary significantly 

depending on the matrix condition. It is appropriate if a structure contains many solid elements. 

- ILUT pre-conditioner: The number of iterations is small. 

- Jacobi pre-conditioner: Pre-conditioning is fast, and a less memory is required. 
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18-1 Introduction 

 

Let us consider two objects A and B in space. They can touch each other, but cannot physically 

penetrate into each other (i.e., they cannot exist in a common space). This is a basic condition for 

contact/impact analysis. The following equation conceptually expresses the relationship of the 

domains in which contact occurs. 

A B         (18.1) 

where, A Band  represent the domains of the objects A and B respectively. 

 

 

 

 

 

 

 

  

 

Figure 18-(1) Schematic representation of contact  

 

The relationship between the boundary surfaces of the domains in contact is as follows:  

C A A           (18.2) 

where, 

,A B   : Boundary domains of the objects, A and B  

C     : Boundary surface on which the objects, A and B are in contact 

 

When we assign a master and a slave to two objects, A and B, it does not matter if the master and 

Chapter 18. Contact 
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the slave are switched in the algorithm. However, we can achieve better convergence practically 

in numerical analysis if we assign the master to an object, which is rigid or dense, or its mesh is 

relatively coarse. 

 

A slave node and a master surface become a basis of the algorithm for contact/impact analysis.  

MIDAS uses the penalty method for contact/impact analysis. Conceptually, this method pertains 

to inserting a spring between a contact surface and a node, which numerically penetrates into the 

surface. This method is advantageous in that it is easy to implement, and in case of dynamic 

analysis, it does not affect the time increments. 

 

 



 

 

Chapter 18  |  Contact 

m
id

a
s 

F
E

A
 

430 We Analyze and Design the Future 

18-2 Contact search 

 

MIDAS follows the steps below for contact search. 

(1) Global Search: For each slave node, a nearest master node is searched. For global search, a 

Bucket sort algorithm is used.  

(2) Local Search: Among the segments connected to a master node, a segment nearest to the 

slave node is searched. 

(3) Contact Search: A contact point on a master segment is calculated. 

 

18-2-1 Global Search 

In order to find the nearest node among N nodes, calculation for the following equation is 

performed 1N  times: 

     
2 2 2

2

i j i j i jl x x y y z z         (18.3) 

Since the above equation is solved for every node, the calculation takes place N(N-1) times. This 

search may result in consuming the majority of the analysis time. For effective search, MIDAS 

uses a Bucket sort algorithm. 

 

The basic concept of the Bucket sort algorithm pertains to dividing nodes into a number of groups 

(buckets) and calculating nodal distances only between the nearest buckets. In case of one-

dimensional analysis, the number of buckets, which need to be searched, is 3 buckets in total, 

which are the left and right adjacent buckets and itself. Similarly, search for a total of 9 buckets 

and 27 buckets are required for two and three dimensional analyses respectively. The amount of 

calculations required here is expressed by, 

 
3

1
x

N
N

NB

 
  

 
, 

9
1

x y

N
N

NB NB

 
 

  

, 
27

1
x y z

N
N

NB NB NB

 
 

   

 (18.4) 

where, , &x y zNB NB NB  are the numbers of buckets in x, y and z directions respectively. 

 



 

 

We Analyze and Design the Future 431 

Analysis and Algorithm Manual 
m

id
a

s 
F

E
A

 

18-2-2 Local Search 

 

This searches a master segment nearest to each slave node. 

 

Figure 18-(2) Local search 

 

Let us consider that
mn is a master node nearest to the slave node,

sn . We then define g , which is a 

vector from
mn to

sn . The vector s is the vector g projected onto the master segment. 

   s g g m m      (18.5) 

where, 

1

1

i i

i i










c c
m

c c
 

ic and
1ic are the frame vectors of the master segment. We then find

is using Eq. (18.6), which is 

a segment on which the node,
sn is located, among the segments adjacent to the master node,

mn .  

   

   

1

1

0

0

i i i

i i





   

   

c s c c

c s s c
     (18.6) 



 

 

Chapter 18  |  Contact 

m
id

a
s 

F
E

A
 

432 We Analyze and Design the Future 

18-2-3 Contact Search 

 

In this part, the procedure for calculating the contact point on the master segment nearest to the 

slave node,
sn is introduced. Let us suppose that r is a position vector from the origin to the 

contact point, and that t is a position vector from the origin to the slave node,
sn . 

 

Figure 18-(3) Location of contact point 

 

The line component drawn from the slave node,
sn to the nearest point on the master surface will 

be perpendicular to the master segment. Thus the contact point,  ,c c   on the master segment, 

is  can be found by using the following equations: 

   

   

, , 0

, , 0

c c c c

c c c c

   


   



    


    

r
t r

r
t r

    (18.7) 

Eq. (18.7) can be rewritten as Eq. (18.8), which can be numerically solved by using the Newton-

Raphson method. 
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  

1

1

,c c

i i

i i

 
 

 

 

  

  





    
              
         
   
       

  

  

r r

r r
r t

r r

   (18.8) 

Using the initial condition, 
0 0  and 

0 0  , Eq. (18.8) is solved iteratively. In general, the 

solution can be converged within 4 iterations. 

 

Now each slave node is checked whether or not the slave node has numerically penetrated into the 

master surface. If the slave node has not numerically penetrated into the master surface, nothing 

happens. If it has, the contact force is applied between the slave node and its contact point on the 

master segment. The applied force at this time is proportional to the degree of numerical 

penetration. The degree of penetration, l is defined by, 

 ,i c cl      n t r      (18.9) 

where, 

 ,c c     : Contact point 

 ,i i c c n n : Vector perpendicular to the master segment,
is at the contact point 

 

If the slave node,
sn has numerically penetrated into the master segment,

is , the force expressed in 

Eq. (18.10) is added to the slave node and the master segment,
is . 

s i ilk f n       (18.10) 

where,  
2

i i
i si

i

K A
k f

V
  : Stiffness factor of the master segment, 

is  

iK  : Bulk modulus 

iA  : Area of the master segment, 
is  

iV  : Volume 

sif  : Proportional coefficient (default value is 0.1) 
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The Eq. (18.10) can be directly applied to the slave node. However, in the master segment, the 

force is distributed to nodes of the master segment. 

 ,j

m j c c sh  f f      (18.11) 

where, 1,2,3,4j   : Nodes of the master segment, 
is  
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18-3 Function 

 

18-3-1 Friction 

 

Friction can be considered when contact/impact analysis is performed in MIDAS. The coulomb 

friction is used, and the friction coefficient is determined by, 

  v

k s k e


   


        (18.12) 

where, 

s : Static friction coefficient 

k : Dynamic friction coefficient 

  : Damping coefficient 

v  : Relative velocity between a slave node and a master segment  

 

18-3-2 Nodes to surfaces 

 

This function is used for contact/impact analysis of slave nodes and master surfaces. It is required 

to specify a node as a slave and a surface as a master. Radius of a node can be specified to 

consider the physical size effect. When the distance between the node and the surface is less than 

the specified radius of the node, contact is considered to have taken place. 

  

18-3-3 Surfaces to Surfaces 

 

This function is used for contact analysis between surfaces. The user is free to set the master/slave 

surfaces in this function. 
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18-3-4 Single surface 

 

This function defines only slave surfaces. It is useful for analyzing two separate surfaces of an 

object coming in contact with each other. Currently it can be used only in explicit dynamic 

analysis. 

 

18-3-5 Tied 

 

This function is used when master/slave surfaces are in contact with each other from the initial 

stage. And the two surfaces are not permitted to separate during the progress of analysis. 

Especially, this is useful when master/slave nodes do not coincide with each other. This function 

is based on the nodal constraint method as opposed to the penalty method. As such, a slave is set 

to the densely meshed side, and a master is set to the other side. If the master/slave is inversely set, 

the master surface can numerically penetrate through the slave surface. 
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19-1 Introduction 

The term for fatigue failure represents the phenomenon in which structural members fail under a 

repeatedly applied load, which by a single application does not exceed the yield strength. Two 

common methods exist for fatigue analysis, which are a stress-based (stress-life) method using the 

S-N curve and a strain-based (strain-life) method using the E-N curve. While the method based on 

the S-N curve is developed to purely execute the fatigue analysis, the method based on the E-N is 

developed for the crack propagation analysis, which includes fatigue analysis. This section will 

focus on the stress based method. 

  

The S-N curve is a line graph, which shows the relationship of the stress amplitude (S) and the 

cycle to failure (N). S is caused by a reverse loading of constant amplitude, which is repeatedly 

applied to the structure until failure.  

 

For fatigue analysis, static analysis is performed first. Then the stress amplitude is found by 

selecting one component among the maximum absolute stress, minimum absolute stress and    

von Mises stress. Applying this to the S-N curve, we can find the number of cycles of the repeated 

load at which fatigue failure takes place. 

 

All structures have their own inherent S-N curves. But it is not practical to undertake fatigue 

testing for all structures. For such cases, the S-N curves, which are obtained from the standard 

reduced fatigue testing, are modified by certain factors. Also in general, structures are subjected to 

repeated loads of variable amplitudes. In order to use the S-N curve in such cases, the Rainflow-

Counting technique is used. In this technique, the stress of unit amplitude and the number of 

cycles are extracted from the repeated stresses of variable amplitudes, which are then applied to 

the S-N curves.        

 

 

Chapter 19. Fatigue Analysis 
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19-2 Load Cycles 

 

In case uniform amplitude of stresses is regularly acting like Fig. 19-(1), the stress amplitude, 

a  and the mean stress, 
m can be calculated as,  

  max min

2
a

 



     (19.1) 

  max min

2
m

 



     (19.2) 

 

Figure 19-(1) Fully reverse loading and mean stress  

 

In the stress-life method, if uniform amplitude of stresses is regularly repeated at the state of the 

mean stress being zero, the S-N curve in Fig. 19-(2) is used. 

 

 

Figure 19-(2) S-N curve 
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uS and
eS in Fig. 19-(2) represent the maximum amplitude stress and endurance limit amplitude 

stress respectively. The Miner’s S-N curve in Fig. 19-(2) shows that repeated stresses under the 

endurance limit do not affect the fatigue life. And the modified Miner curve shows the 

relationship of accumulated fatigue damage even stresses less than the endurance limit are 

accumulated. However, the stress-life based fatigue analysis can not be used if fatigue failure 

occurs under a repeated load of 1,000 cycles.  

 

Generally if an S-N curve for a material is not separately defined, an S-N curve like Fig. 19-(3) is 

used. This curve shows a line connecting from the point at which the stress in the magnitude of 

90% of the maximum amplitude stress (
uS ) is repeated 1,000 times and to a point at which the 

endurance limit amplitude stress ( 0.5e uS S ) is repeated 106 times.  

 

 

Figure 19-(3) Basic S-N curve shape 

 

If we define b to represent the slope of the S-N curve as in Fig. 19-(3), the number of stress cycles 

(N), which leads to fatigue failure under the repeated action of a specific stress amplitude (S), can 

be calculated as,   

  
 log log

log log

e

e

S S
b

N N


 


    (19.3) 
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1

b

e

e

S
N N

S

 
  

 
    (19.4) 

 

The advantages and shortcomings of the stress-life method are as follows: 

- Fatigue analysis can be performed through a relatively simple algorithm. 

- Calculation is simple, and the analysis time is short. 

                - True plastic stress-strain curve is ignored, and all the strains are treated elastically. As such, it is 

not effective if plastic strains are significant.   

- This is effective for a long life with small cyclical plastic strain components. 
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19-3 Mean Stress Effects 

 

Even if the stress amplitude,
a , exerted onto a structure is the same, if the mean stress,

m  is 

different, the fatigue life also changes as shown in Fig. 19-(4). As the mean stress,
m increases, 

the maximum stress,
uS and the endurance limit stress,

eS decrease. Haigh obtained such 

relationship first. The left diagram in Fig. 19-(4) shows the relationship between the mean stresses 

and maximum stresses under the same stress amplitude. The diagram on the right shows the effect 

of average stresses on the maximum stress factors and the endurance limit factors.   

0 0
10 10 10 10

2 4 6 8

a

u

σ aσ

mσ

mσ +

mσ = 0

S
uS

eSeS

uS

N +

N = 1

N

 

Figure 19-(4) Mean stress effects 

 

Goodman and Gerber proposed expressions below to reflect the effect of average stresses, which 

can be represented as Fig. 19-(5),  

  Goodman (England, 1899) 1a m

e uS S

 
    (19.5) 

  Gerber (Germany, 1874) 

2

1a m

e uS S

  
  
 

  (19.6) 
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uS

eS

Compressive mean stress
σm

σa

Goodman

Gerber

 

Figure 19-(5) Relationship of stress amplitude and mean stress 

 

For example, if
max 758.42MPa  ,

min 68.95MPa  and 1034.21MPauS  , 

344.74MPa a  and 413.69MPam  . Using the Goodman’s equation, we find 

574.57MPaeS  . Note that  eS is a modified value based on the mean stress.  
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19-4 Modifying Factors 

 

Generally, using a standard rotating bend test such as R.R Moore test, a baseline for the S-N curve 

is determined for a specimen loaded under the condition of fully reversed bending. At this point, if 

the endurance limit is eS , then the value of eS in a real situation must be obtained through 

modifications. For steels, a number of empirical relationships have been developed, which can be 

simply used to arrive at appropriate S-N curves reflecting real situations. The following factors 

can be considered:  

 

- Component size and shape 

- Loading type 

- Surface finish 

- Surface treatment 

- Temperature 

- Environment 

 

The following equation shows the true endurance limit using modification factors. 

  ...e e size surS S C C     (19.7) 

The fatigue strength reduction factor is defined by, 

  
 

1

...
f

size load sur

K
C C C

    (19.8) 

The modification factor usually affects defining the endurance limit, and the modifications 

required for the rest of the S-N curve are not well defined. The modification factor is used to 

better reflect accurate safety factors for loading. The loading affects the endurance limit at one 

million cycles, and it can sometimes affect the fatigue strength at 1000 cycles. In such a case, the 

S-N curve can be modified as Fig 19-(6).  
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Figure 19-(6) Modifying factor effect 

 

19-4-1 Component size and shape 

 

When various diameters (for shaft) are used in fatigue tests, the endurance limit of a material can 

be modified by the following equations: 

   1.0 8sizeC d mm      (19.9) 

   0.0971.189 8 250sizeC d mm d mm      (19.10) 

If a specimen is not a circular section, but is a rectangular section, an equivalent diameter, eqd  

can be calculated as follows: 

 

  
2 0.65eqd wt     (19.11) 

where, w stands for width, and t stands for thickness. 
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19-4-2 Types of loading 

 

Fatigue analysis data are obtained through reversed bending load and axial load testing of 

specimens. Modification factors for loading types can be used to relate fatigue testing data to 

fatigue testing for other loads. The influence of loading type can alter the values of 
1000S and

eS . 

The modification factors for the loading types of 
1000S are as follows: 

 

 

Table 19-(1) modification factors for the loading types of 
1000S  

The modification factors for the loading types of the endurance limit,
eS at 1000 cycles are as 

follows: 

 

Measured Loading Target Loading Cload 

Axial to Torsion 0.82 

Bending to Torsion 0.82 

Torsion to Axial 1.22 

Torsion to Bending 1.22 

Table 19-(2) modification factors for the loading types of 
eS  

 

19-4-3 Surface finish 

 

Marks, grooves and machined traces on a material surface are the geometrical properties of the 

material, which add stress concentration to the existing stress. A material composed of uniform 

Measured Loading Target Loading Cload 

Axial to Bending 1.25 

Axial to Torsion 0.725 

Bending to Torsion 0.58 

Bending to Axial 0.8 

Torsion to Axial 1.38 

Torsion to Bending 1.72 
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and fine crystals such as high strength steel is more prone to rough surface finishes than to a 

material composed of coarse crystals such as cast iron. The surface finish modification factor is 

often presented in qualitative terms such as polished, machined or forged. 

 

The diagram below presents a graph related to surface roughness. Qualitative surface roughness 

can be represented by such measures as the root mean square ( AR ) and arithmetic average (AA). 

The surface roughness caused by mechanical fabrication can be found in the mechanical and 

manufacturing handbooks. Fig. 19-(7) presents the relationship between the surface 

factors,
surC and tensile strength,

uS with respect to surface roughness.  

 

Figure 19-(7) Surface finish effect 

Surface finish is more important for high strength steel. Local irregularities on surfaces adversely 

affect fatigue due to stress concentration.  
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19-4-4 Surface treatment 

 

In addition to surface roughness, surface treatment also affects the fatigue life, especially the 

endurance limit. The surface treatment can be broadly classified into mechanical, thermal and 

plating processes, which can create residual stresses on the surfaces. When a structural component 

undergoes deformation due to external forces while being subjected to residual stresses, the 

residual stresses affect the tensile stresses on the surfaces, which in turn affect the fatigue life.  

 

Mechanical treatment 

Typical surface treatments commercially, which induce residual stresses, are cold forming and 

shot peening. Such surface treatments induce compressive residual stresses resulting in 

improvements in fatigue life.  

 

(a) Stresses due to bending moment 

 

(b) Residual stresses 

 

(c) Resulting stresses  

Figure 19-(8) Mechanical treatment effect 



 

 

Chapter 19  |  Fatigue Analysis 

 

m
id

a
s 

F
E

A
 

448 We Analyze and Design the Future 

 

Fig. 19-(8) shows flexural stress becoming reduced at the top surface. Cold rolled bolts are thus 

more resistant to fatigue due to the residual stress. Cold forming or short peening affects fatigue 

life only when it is a long life. Neither affects too much if it is a short life. Appropriate 

modification factors for peening are between 1.5 and 2.0. 

 

Plating treatment 

 

Plating with such materials as chrome or nickel improves the endurance limit. However, plating 

may weaken the resistance to fatigue if a material is plated after mechanical treatment, as a result 

of reduction in compressive residual stresses on the surface.   

 

Thermal effect 

 

The endurance limit of steel tends to increase at low temperatures. At high temperatures, such 

endurance limit for steel does not appear due to the shift of electric potential. Creep becomes 

important at a temperature over approximately half the fusing point. In this range, the stress based 

fatigue life method is no longer valid. At high temperatures, the advantage of compressive 

residual stresses due to annealing may disappear.  

 

19-4-5 Environment 

 

A fatigue load in a corrosive environment leads to more harmful results than the case where 

fatigue and corrosion take place independently. Interaction between fatigue and corrosion, termed 

as corrosion-fatigue, exhibits a very complicated fracture mechanism. Research in this 

phenomenon is not matured, and little quantitative data or useful theoretical methods are available.  
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19-5 Rainflow-Counting Algorithm 

 

The S-N curve shows the number of cycles of repeated stresses until fatigue failure is reached 

under the repeated stresses of a constant amplitude. But in reality, a load hysteresis loop exhibits 

the characteristics of variable amplitudes. In order to define fatigue damage under variable 

amplitude stresses, such variable amplitude is converted into a number of uniform amplitude 

stresses, which will utilize appropriate S-N curves. MIDAS uses the Rainflow-Counting method 

to sum up the cycles. The Rainflow-Counting method first reads in the local maximum and 

minimum points as follows:  

        1 1 2A i A i A i A i         (19.12) 

       1 1 2A i A i A i A i         (19.13) 

It calculates the cycle of a period, and its amplitude is said to be S. All the amplitudes, each 

having a period at each cycle, are summed up. Eq. (19.12) has the shape of the left figure in Fig 

19-(9), and Eq. (19.13) has the shape of the right figure in Fig 19-(9).  

 

 

S

t
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Figure 19-(9) Counting of one cycle 
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Next, Rainflow-Counting is performed, and the load cycle waning or waxing is finally drawn as 

Fig. 19-(10). Each 1S , 2S or 3S is said to be a period of one cycle. Applying the Miner’s rule to 

the unit alternating stress amplitudes thus obtained, the damage rate, which considers damage 

caused by the accumulated fatigue, can be obtained. 

 

 

Figure 19-(10) Counting of load cycle amplitude 

 

Stress spectrum is arranged as Fig. 19-(11).  
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Figure 19-(11) Counting load cycle amplitude 
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The damage rate at the i-th repeated load is expressed as, 

 

i

i
i

N

n
D        (19.15) 

where,
in  represents the number of repetitions of the corresponding stress amplitude, and

iN  

represents the number of repetitions up to the point of fatigue failure. The final sum of damage is 

expressed as, 

 
1 1

n n
i

total i

i i i

n
D D

N 

       (19.14) 
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19-6  Fatigue Analysis Procedure 

 

MIDAS follows the following procedure for fatigue analysis: 

 

1. Read in the elastic stress data from the analysis results.  

2. Obtain the absolute values of principal stresses under a critical load case.  

3. Scale the acquired elastic stress using the stress concentration coefficient. 

4. Analyze the load-time hysteresis graph through Rainflow-Counting.  

5. Modify the stress amplitude value of S-N curve using the modification factor. 

6. Calculate the damage considering the influence of mean stress.  

7. Linearly sum the damage associated with each cycle using the Miner’s rule. 

8. Find the fatigue life or the safety coefficient at all nodes. 
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20-1 Introduction 

 

 

CFD (Computational Fluid Dynamics) analysis investigates fluid flows and predicts fluid loads 

acting on a structure subjected to winds. Wind loads acting on a civil structure is generally 

obtained from the design codes. But detail distribution of wind loads or wind effects on alternate 

designs can be predicted through CFD analysis. Especially when a structure retains a generally 

uniform cross section such as in bridge structures, flow information can be sufficiently found 

through 2-dimensional analysis.  

 

Midas FEA analyzes 2-dimensional flow in a structured grid. The RANS (Reynolds averaged 

Navier-Stokes) equation is obtained from Favre averaging of the Navier-Stokes equation, which is 

based on 2-dimensional compressible viscous flow. The Favre average used here is the density 

weighted average. Also, the two-equation turbulence model can be applied, and analysis can be 

performed for both steady state and unsteady state. The computational fluid technique adopts 

spatial discretization using the density based time marching method and the finite volume method. 

The boundary conditions and turbulence models of computational fluid analysis in midas FEA are 

indicated below.  

 

Boundary condition 

Far-field boundary condition 

Solid wall boundary condition 

Symmetric boundary condition 

Turbulence model 

q   model: Wall function can be used 

k   SST (Shear Stress Transport) model 

k   BSL (Base Line) model 

 

 

Chapter 20. CFD Analysis 
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20-2 RANS equation and turbulence model 

 

 

The RANS equation, which is a governing equation for turbulent compressible flow, and the 

turbulence model, can be expressed by a single equation.  

 

v v

t x y x y

    
    

    

W E F E F
S     (20.1) 

where,  

W   Conservative flow variable vector  1 2, , , , ,
T

u v e s s      

 

Each of E and F represents inviscid flux vector in the x direction and y  direction 

respectively. 
vE and 

vF  represent viscous flux vectors.   

 2

1 2, , , ( ) , ,
T

u u p uv e p u us us      E     (20.2) 

 2

1 2, , , ( ) , ,
T

v uv v p e p v vs vs      F     (20.3) 

1 2
1 20, , , , ( ) , ( )

T

v xx xy x m S t m S t

s s

x x
       

  
    

  
E    (20.4) 

1 2
1 20, , , , ( ) , ( )

T

v yx yy y m S t m S t

s s

y y
       

  
    

  
F     (20.5) 

where,  

   Density 

p   Pressure 

e   Total energy 

ij , 
i   Viscous stress,  Total energy flux 

m , 
t   Molecular viscosity coefficient, Turbulence viscosity coefficient   
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1s  
and 

2s are variables for the 2-equation turbulence model equation. Their definitions change 

depending on the turbulence model. S is the source term of the turbulence model, and its 

definition also changes depending on the turbulence model. midas FEA provides turbulence 

models, which are the q  model of Coakley1  and the k   BSL/SST model of Menter2. 

The q  model predicts a turbulence viscosity coefficient using the transport equation about 

turbulent velocity scale, q and specific dissipation rate,  . Here  retains the following 

relationship with turbulence kinetic energy, k and turbulent dissipation rate,  .  

1 2,s q k s
k


         (20.6) 

The k   BSL/SST model developed by Menter combines the advantages of the k  and 

k  models. This is a turbulence model, which uses the k   model near the wall and the 

k   model in other ranges. The variables in the k   BSL/SST model are as follows. 

1 2,s k s
k


          (20.7) 

Although the k   BSL model exhibits similar characteristics as the k   model, the effect of 

free stream is little and the k   SST model exhibits superior performance in adverse pressure 

gradient as it includes the transfer of turbulent shear stress.   

 

The turbulent compressible flow Eq (20.1) is known to cause numerical problems of obtaining 

converged solutions when a low velocity flow is analyzed. In order to overcome such problems, a 

local preconditioning method can be used. This method resolves such inflexibility of convergence 

by expressing the time term of Equation (20.1) in terms of the product of a primitive variable and 

a preconditioning matrix. Midas FEA uses the technique of Weiss and Smith3. The locally 

                                            
1 Coakley, T.J., “Turbulence Modeling Methods for the Compressible Navier-Stokes Equations,” 

AIAA paper 83-1693, 1983 

2  Menter, F.R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering 

Applications,” AIAA Jorunal, Vol. 32, 1994 

3 Weiss, J.M and Smith, W.A., “Preconditioning Applied to Variable and Constant Density 
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preconditioned equation is expressed as, 

v v

t x y x y

    
    

    

Q E F E F
Γ S     (20.8) 

where,  

Q   Primitive variable vector
 
 1 2, , , , ,

T
p u v T s s  

Γ   Preconditioning matrix 

 

In case of steady solution, if Equation (20.8) converges, / t  Q 0 , and as such there is no 

influence of the preconditioning matrix in a steady solution. midas FEA finds a solution by non-

dimensionalizing the RANS equation and the turbulence equation. Non-dimensionalization is 

done on the basis of a free stream condition, and the non-dimensionalized equation retains a form 

identical to that of Equation (20.1).   

 

                                                                                                                                       

Flows,” AIAA Journal, Vol. 33, 1995 



 

 

457 We Analyze and Design the Future 

Chapter 17  |  Equation Solver 

 

m
id

a
s 

F
E

A
 

20-3 Spatial discretization 

 

 

The locally preconditioned Equation (20.8) can be simply expressed as, 

v
t


  



Q
Γ F F S      (20.9) 

If the above equation is integrated with respect to computational cells as shown in Fig. 20-(1) and 

a divergence theorem is applied, it is transformed into the following.  

v
V V

d
dV d d dV

dt  
        Γ Q F n F n S   (20.10) 

Since midas FEA uses a structured grid, it is cautioned that the cell placement is as shown in Fig. 

20-(1). Assuming that each cell size is small enough and integrating with respect to the volume of 

cells and interface, the following semi-discretized equation, which has been spatially discretized, 

is arrived by the finite volume method.   

( , )i jd

dt
 

Q
Γ R 0      (20.11) 

 

 

 

 

 

 

 

 

 

Fig. 20-(1). Placement of computational cells and index  
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The residual, R can be expressed in terms of total flux, cF . 

( , )

( , )

1
( )c i j

i jV
   R F n S     (20.12) 

For stable numerical analysis, the inviscid term in the flux vector, cF , is replaced with the 

numerical flux vector of Roe4, and wiggle is prevented by applying the entropy correction method. 

If upwind difference is simply used in calculating the numerical flux, only the first order accuracy 

can be obtained. In order to obtain more accurate solutions, higher order spatial discretization can 

be achieved while maintaining monotone, by applying van Leer’s 5  MUSCL extrapolation 

technique and limiter.   

 

 

 

                                            
4 Roe, R.L., “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” J. of 

Comp. Physics, Vol. 43, 1981 

5 van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V. A Second Order 

Sequel to Godunov’s Method,” J. of Comp. Physics, Vol. 32, 1976 
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20-4 Steady flow 

  

 

In steady flow analysis, we find pQ for which the time term becomes zero in the unsteady flow 

equation. Expressing Equation (20.1) using the time difference coefficient, ,  

1 (1 )n n 



   



Q
Γ R R 0     (20.13) 

midas FEA uses 1  . If 
1n

R  in the above equation is linearized and rearranged, the 

following simultaneous equations are obtained.   

[ ( )] n

V





    D A B Q R     (20.14) 

The diagonal matrix, D is as follows. 

  D Γ K       (20.15) 

where,  

K   Jacobian matrix of turbulence source term 

A   cF Jacobian matrix at the cell boundary 1/ 2i    

B   cF Jacobian matrix at the cell boundary 1/ 2j   

 

The Jacobian matrix K  of the source term takes different forms depending on the turbulence 

model. In order to maintain stable numerical analysis, midas FEA only includes the dissipation 

term in the source term.  

 

The solution for Equation (20.14) is calculated by the AF-ADI (Approximate Factorization-

Alternative Direction Implicit) method.  

1[ ] [ ] n

V V

 
 

    D A D D B Q R    (20.16) 

Since the above equation is a block tri-diagonal matrix, the solution can be effectively calculated. 
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20-5 Unsteady flow 

  

 

In unsteady flow analysis, dual time stepping is used, which has been developed to reduce errors 

resulting from applying the AF-ADI method. The time discretization equation derived by a stable 

“2-parameter family” integration scheme, while maintaining the second order accuracy in the time 

term, is as follows.   

1
1(1 ) (1 )

2 2

n n
n n

t t

 
 


 

     
 

W W
R R 0   (20.17) 

Midas FEA uses 1 1and   . Adding the pseudo time term multiplied by the pre-

conditioning matrix to the above equation and applying the dual time stepping, the next equations 

are obtained.   

1
13 1

2 2

n l
l

t t 


  

   
  

W W Q
Γ R 0    (20.18) 

1l l  W W W      (20.19) 

where,  

l  Index for dual time iteration   

n  Index for time increment 

If 
1l

R  in the above equation is linearized and rearranged, the following simultaneous equations 

are obtained. 

[ ( )]
V





    D A B Q R     (20.20) 

The diagonal matrix, D is as follows. 

3

2 t





  


D M Γ K      (20.21) 

13 1

2 2

l n n n
l

t t

 
  

 

W W W W
R R    (20.22) 
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where,  

R   Modified residual  

M   Transformation matrix from Q to W  

 

If the dual time stepping becomes converged, R 0
, and the following relationship is satisfied. 

1 1l l n  W W W       (20.23) 

Similar to the steady flow analysis, solution for Equation (20.20) is calculated by the AF-ADI 

(Approximate Factorization-Alternative Direction Implicit) method. 
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20-6 Numerical stability 

  

 

Since the Navier-Stokes equation retains the properties of both convection and diffusion, pseudo 

time increment  is calculated as,   

1 1 1

h p  
 

  
      (20.24) 

The time increment for convection,
h is controlled by the CFL number, and the time increment 

for diffusion, p is controlled by the von Neumann number. The basic values of the CFL number 

and the von Neumann number are 10.0 and 5.0 respectively. 

 

Since the approximate Riemann solver of Roe used to calculate the inviscid term of numerical 

flux can cause numerical wiggle, midas FEA uses the entropy correction. If we define the property 

of numerical viscosity used in the numerical flux vector of Roe as  ,   is replaced by the 

following values.  

1

2

1 1

1

,

1
{ },

2

if

if

   


   



 

  
    (20.25) 

Generally values in the range of
1 0.0 0.25   are used. The higher the value, the more 

dissipative property is retained in the solution. Its basic values for steady flow analysis and 

unsteady flow analysis are 0.05 and 0.0 respectively.   

 

Considering numerical stability, midas FEA carries out turbulent steady analysis assuming 

laminar flow over the number of iterations defined by the user. Also, the initial flow field is 

obtained from the steady analysis results for stable analysis of unsteady flow.      
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20-7 Computational fluid analysis results 

  

 

Computational fluid analysis results from midas FEA present velocity, pressure, etc. on the 

computational cells and aerodynamic coefficients.  

 

Results on cells 

 

Velocity ,u v      [ / secm ] 

Pressure p        [
2/N m ] 

Turbulent kinetic 

energy 

2( )k q  [
2 2/ secm ] 

 

Aerodynamic coefficients 

 

Lift coefficient LC     

Drag coefficient DC     

Moment 

coefficient 
MC   

 

The amount of results for velocity, pressure and turbulent kinetic energy is substantially large. So 

the results are produced at the time steps specified by the user. Aerodynamic coefficients on the 

other hand are produced at every time step. 
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